Flexible perceptual sensitivity to acoustic and distributional cues
Pronunciation variation in many ways is systematic, yielding patterns that a canny listener can exploit in order to aid perception.
This work asks whether listeners actually do draw upon these patterns during speech perception. We focus in particular on a
phenomenon known as paradigmatic enhancement, in which suffixes are phonetically enhanced in verbs which are frequent in their
inflectional paradigms. In a set of four experiments, we found that listeners do not seem to attend to paradigmatic enhancement
patterns. They do, however, attend to the distributional properties of a verb’s inflectional paradigm when the experimental task
encourages attention to sublexical detail, as is the case with phoneme monitoring (Experiment 1a–b). When tasks require more
holistic lexical processing, as with lexical decision (Experiment 2), the effect of paradigmatic probability disappears. If
stimuli are presented in full sentences, such that the surrounding context provides richer contextual and semantic information
(Experiment 3), even otherwise robust influences like lexical frequency disappear. We propose that these findings are consistent
with a perceptual system that is flexible, and devotes processing resources to exploiting only those patterns that provide a
sufficient cognitive return on investment.
Keywords: probability, perception, pronunciation variation, cognitive resources, phonetics, morphology
Article outline
- Experiment 1a
- Methods
- Participants
- Materials
- Design
- Procedure
- Results
- Accuracy
- Reaction time
- Discussion
- Methods
- Experiment 1b
- Methods
- Participants
- Materials
- Design
- Procedure
- Results
- Accuracy
- Reaction time
- Discussion
- Methods
- Experiment 2
- Methods
- Participants
- Materials
- Design
- Procedure
- Results
- Accuracy
- Reaction time
- Discussion
- Methods
- Experiment 3
- Methods
- Participants
- Materials
- Design
- Procedure
- Results
- Accuracy
- Reaction time
- Discussion
- Methods
- General discussion
- Conclusion
- Acknowledgements
- Notes
-
References
Published online: 10 August 2018
https://doi.org/10.1075/ml.16029.coh
https://doi.org/10.1075/ml.16029.coh
References
Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K.
Altmann, G. T. M., & Kamide, Y.
Aylett, M., & Turk, A.
Baayen, R. H., Levelt, W. J. M., Schreuder, R., & Ernestus, M. T. C.
Baayen, R. H., Vasishth, S., Kliegl, R., & Bates, D.
Baayen, R. H., Wurm, L. H., & Aycock, J.
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J.
Bates, D., Maechler, M., Bolker, B. M., & Walker, S.
Beddor, P. S., McGowan, K. B., Boland, J. E., Coetzee, A. W., & Brasher, A.
Bell, A., Brenier, J. M., Gregory, M., Girand, C., & Jurafsky, D.
Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gregory, M., & Gildea, D.
Blazej, L. J., & Cohen-Goldberg, A. M.
Boersma, P., & Weenink, D.
Brysbaert, M., New, B., & Keuleers, E.
Connine, C. M., Titone, D., & Wang, J.
Dahan, D., Swingley, D., Tanenhaus, M. K., & Magnuson, J. S.
Davis, M. H., Marslen-Wilson, W. D., & Gaskell, M. G.
Ferreira, F., Henderson, J. M., Anes, M. D., Weeks, P. A., & McFarlane, D. K.
Gahl, S., & Garnsey, S. M.
Gregory, M. L., Raymond, W. D., Bell, A., Fosler-Lussier, E., & Jurafsky, D.
Heinrich, A., Flory, Y., & Hawkins, S.
Hyönä, J., Vainio, S., & Laine, M.
Jurafsky, D., Bell, A., Gregory, M., & Raymond, W. D.
Kemps, R. J. J .K., Ernestus, M., Schreuder, R., & Baayen, R. H.
Kemps, R. J. J .K., Wurm, L. H., Ernestus, M., Schreuder, R., & Baayen, R. H.
Kuperman, V., & Bresnan, J.
Kuperman, V., Pluymaekers, M., Ernestus, M., & Baayen, R. H.
Lehiste, I.
Lukyanenko, C., & Fisher, C.
Magnuson, J. S., Dixon, J. A., Tanenhaus, M. K., & Aslin, R. N.
Mathôt, S., Schreij, D., & Theeuwes, J.
Mattys, S. L., Barden, K., & Samuel, A. G.
Mattys, S. L., Brooks, J., & Cooke, M.
Mattys, S. L., & Wiget, L.
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, R. H., & Bates, D.
Molinaro, N., Barber, H. A., & Carreiras, M.
Moscoso Del Prado Martín, F., Kostić, A., & Baayen, R. H.
Osterhout, L., & Mobley, L. A.
R Core Team
(2015) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org/
Salverda, A. P., Dahan, D., & McQueen, J. M.
Schuppler, B., Van Dommelen, W. A., Koreman, J., & Ernestus, M.
Tabak, W., Schreuder, R., & Baayen, R. H.
Tily, H., Gahl, S., Arnon, I., Snider, N., Kothari, A., & Bresnan, J.
Tily, H., & Kuperman, V.
Van Petten, C., Coulson, S., Rubin, S., Plante, E., & Parks, M.
Cited by
Cited by 2 other publications
Lohmann, Arne & Benjamin V. Tucker
Schlechtweg, Marcel & Greville G. Corbett
This list is based on CrossRef data as of 10 april 2022. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.