How lexical ambiguity distributes activation to semantic neighbors
Some possible consequences within a computational framework
The role which the diversity of a word’s contexts plays in lexical access is currently the object of research. Vector-space models such as Latent Semantic Analysis (LSA) are useful to examine this role. Having an objective, discrete model of lexical representation allows us to objectify parameters in order to define contextual focalization in a more measurable way. In the first part of our study, we investigate whether certain empirical data on ambiguity can be modeled by means of an exclusively symbolic single representation model such as LSA and an excitatory-inhibitory mechanism such as the Construction-Integration framework. Our observations support the idea that some ambiguity effects could be explained by the contextual distribution using such a model. In the second part, we put abstract and concrete words to the test. Our LSA model (exclusively symbolic) and the excitatory-inhibitory mechanism can also explain the penalty paid by abstract words as they activate other words through semantic similarity and the advantage of concrete words in naming and semantic judgments, though it does not account for the advantage of concrete words in lexical decision tasks. The results of this second part are then discussed within the framework of the embodied/symbolic view of the language process.
References (59)
Adelman, J. S., Brown, G. D. A., & Quesada, J. F. (2006). Contextual diversity, not word frequency, determines word naming and lexical decision times.
Psychological Science
, 171, 814-823.
Besner, D., & Joordens, S. (1995). Wrestling with ambiguity—Further reflections: Reply to Masson and Borowsky (1995) and Rueckl (1995).
Journal of Experimental Psychology: Learning, Memory, and Cognition
, 211, 515-519.
Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts.
Journal of Cognitive Neuroscience
, 171, 905-917.
Bleasdale, F. A. (1987). Concreteness-dependent associative priming: Separate lexical organization for concrete and abstract words.
Journal of Experimental Psychology: Learning, Memory, & Cognition
, 131, 582-594.
Bransford, J. D., & McCarrell, N. S. (1974). A sketch of a cognitive approach to comprehension. In W. Weimer & D. Palermo (Eds.),
Cognition and the symbolic processes
(pp. 189-229). Hillsdale, NJ: Lawrence Erlbaum Associates.
Brown, W. P., & Ure, D. M. J. (1969). Five rated characteristics of. 650 word association stimuli.
British Journal of Psychology
, 601, 233-249.
Colangelo, A., Buchanan, L., & Westbury, C. (2004). Deep dyslexia and semantic errors: A test of the failure of inhibition hypothesis using a semantic blocking paradigm.
Brain and Cognition
, 541, 232-234.
Colangelo, A., & Buchanan, L. (2005). Semantic ambiguity and the failure of inhibition hypothesis as an explanation for reading errors in deep dyslexia.
Brain & Cognition
, 57(1), 39-42.
Crutch, S. J., & Warrington, E. K. (2005). Abstract and concrete concepts have structurally different representational frameworks.
Brain
, 1281, 615-627.
Crutch, S. J., Ridha, B. H., & Warrington, E. K. (2006). The different frameworks underlying abstract and concrete knowledge: Evidence from a bilingual patient with a semantic refractory access dysphasia.
Neurocase
, 121, 151-163.
Davis, C. J., & Perea, M. (2005). BuscaPalabras: A program for deriving orthographic and phonological neighborhood statistics and other psycholinguistic indices in Spanish.
Behavior Research Methods
, 371, 665-671.
Deerwester, S., Dumais, S., Furnas, G., Landauer, T., & Harshman, R. (1990). Indexing by latent semantic analysis.
Journal of the American Society for Information Science
, 411, 391-407.
DeGroot, A. M. B. (1989). Representational aspects of Word imageability and Word frequency as assessed through Word association.
Journal of Experimental Psychology: Learning, Memory, and Cognition
, 151, 824-845.
Duffy, S. A., Morris, R. K., & Rayner, K. (1988). Lexical ambiguity and fixation times in reading.
Journal of Memory and Language
, 271, 429-446.
Duñabeitia, J. A., Avilés, A., Afonso, O., Scheepers, C., & Carreiras, M. (2009). Qualitative differences in the representation of abstract versus concrete words: Evidence from the visual-world paradigm.
Cognition
, 1101, 284-292.
Estévez, A. (1991). Estudio normativo sobre ambigüedad en castellano.
Cognitiva
, 31, 237-271.
Hino, Y., & Lupker, S. J. (1996). Effects of polysemy in lexical decision and naming: An alternative to lexical access accounts.
Journal of Experimental Psychology: Human Perception and Performance
, 221, 1331-1356.
Hino, Y., Lupker, S. J., & Pexman, P. M. (2002). Ambiguity and synonymy effects in lexical decision, naming, and semantic categorization tasks: Interactions between orthography, phonology, and semantics.
Journal of Experimental Psychology: Learning, Memory, & Cognition
, 281, 686-713.
Howell, J. R., & Bryden, M. P. (1987). The effects of word orientation and imageability on visual half-field presentations with a lexical decision task.
Neuropsychologia
, 251, 527-538.
Huettig, F., Quinlan, P., McDonald, S., & Altmann, G. T. (2006). Models of high-dimensional semantic space predict language-mediated eye movements in the visual world.
Acta Psychologica
, 1211, 65-80.
Joordens, S., & Besner, D. (1994). When banking on meaning is not (yet) money in the bank: Explorations in connectionist modeling.
Journal of Experimental Psychology: Learning, Memory, and Cognition
, 201, 1051-1062.
Jorge-Botana, G., León, J. A., Olmos, R., & Hassan-Montero, Y. (2010).
Visualizing polysemy using LSA and the predication algorithm.
Journal of the American Society for Information Science and Technology
, 61(8), 1706-1724.
Jorge-Botana, G., Olmos, R., & Barroso, A. (2012) The construction-integration framework: A means to disminish bias in LSA-based call routing.
International Journal of Speech Technology
, 15(2), 151-164.
Jorge-Botana, G., Olmos, R., & Barroso, A. (2012). Gallito (Version 2.0.1) [NLP Software]. Retrieved from: [URL]
Jorge-Botana, G., Olmos, R., & Barroso, A. Gallito 2.0: A natural language processing tool to support research on discourse. In Proceedings of the twenty-third Annual Meeting of the Society for Text and Discourse, Valencia from 16 to 18 July 2013.
Kilgarriff, A. (1997). I don't believe in word senses.
Computers and the Humanities
, 31(2), 91-113.
Kintsch, W. (1998). The representation of knowledge in minds as machines.
International Journal of Psychology
, 33(6), 411-420.
Kintsch, W., Patel, V. L., & Ericsson, K. A.. (1999). The role of long term working memory in text comprehension.
Psychologia
, 421, 186-198.
Kintsch, W. (2000). Metaphor comprehension: A computational theory.
Psyhonomic Bulletin and Review
, 71, 257-266.
Kintsch, W. (2001). Predication.
Cognitive Science
, 251, 173-202.
Kintsch, W., & Bowles, A. (2002). Metaphor comprehension: What makes a metaphor difficult to understand?.
Metaphor and Symbol
, 171, 249-262.
Kintsch, W. (2008). Symbol systems and perceptual representations. In M. de Vega, A. M. Glenberg & A. C. Graesser (Eds.),
Symbols and embodiment: Debates on meaning and cognition
(pp. 145-164). Oxford: Oxford University Press.
Kintsch, W., & Mangalath, P. (2011). The construction of meaning.
Topics in Cognitive Science
, 31, 346-370.
Klein, D. E., & Murphy, G. L. (2001). The representation of polysemous words.
Journal of Memory and Language
, 451, 259-282.
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge.
Psychological Review
, 1041, 211-240.
Louwerse, M. M., & Jeuniaux, P. (2010). The linguistic and embodied nature of conceptual processing.
Cognition
, 1141, 96-104.
Louwerse, M. M. (2011). Symbol interdependency in symbolic and embodied cognition.
Topics in Cognitive Science
, 31, 273-302.
Louwerse, M. M., & Zwaan, R. A. (2009). Language encodes geographical information.
Cognitive Science
, 331, 51-73.
Louwerse, M., & Hutchinson, S. (2012). Neurological evidence linguistic processes precedeperceptual simulation in conceptual processing.
Frontiers in Psychology
, 31, 1-11.
McDonald, S., & Shillcock, R. (2001). Rethinking the word frequency effect: The neglected role of distributional information in lexical processing.
Language and Speech
, 441, 295-323.
Mirman, D., & Magnuson, J. S. (2008). Attractor dynamics and semantic neighborhood density: Processing is slowed by near neighbors and speeded by distant neighbors.
Journal of Experimental Psychology: Learning, Memory, and Cognition
, 34(1), 65-79.
Millis, K., & Larson, M. (2008). Applying the construction-integration framework to aesthetic responses to representational artworks.
Discourse Process
, 451, 263-287.
Nakov, P., Popova, A., & Mateev, P. (2001). Weight functions impact on LSA performance. In
Euro Conference RANLP’2001 (Recent Advances in NLP)
, Tzigov Chark, Bulgaria (pp. 187-193).
Paivio, A. (1986).
Mental representations
. New York: Oxford University Press.
Paivio, A. (1991).
Images in mind: The evolution of a theory
. New York: Harvester-Wheasheaf.
Pexman, P. M., & Lupker, S. J. (1999). The impact of semantic ambiguity on visual word recognition: Do homophone and polysemy effects co-occur?
Canadian Journal of Experimental Psychology
, 531, 323-334.
Pexman, P. M., Hino, Y., & Lupker, S. J. (2004). Semantic ambiguity and the process of generating meaning from print.
Journal of Experimental Psychology: Learning, Memory, and Cognition
, 301, 1252-1270.
Pexman, P. M., Hargreaves, I. S., Edwards, J. D., Henry, L. C., & Goodyear, B. G. (2007). Neural correlates of concreteness in semantic categorization.
Journal of Cognitive Neuroscience
, 191, 1407-1419.
Piercey, C. D., & Joordens, S. (2000). Turning an advantage into a disadvantage: Ambiguity effects in lexical decision versus reading tasks.
Memory & Cognition
, 281, 657-666.
Riordan, B., & Jones, M. N. (2011). Redundancy in perceptual and linguistic experience: Comparing feature-based and distributional models of semantic representation.
Topics in Cognitive Science
, 31, 303-345.
Rodd, J., Gaskell, G., & Marslen-Wilson, W. (2002). Making sense of semantic ambiguity: Semantic competition in lexical access.
Journal of Memory and Language
, 461, 245-266.
Samson, D., & Pillon, A. (2003). Concreteness effects in lexical tasks: Access to a mental image?
Brain and Language
, 871, 25-26.
Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1998). Context availability and lexical decisions for abstract and concrete words.
Journal of Memory and Language
, 271, 499-520.
Schwanenflugel, P. J., & Shoben, E. J. (1983). Differential context effects in the comprehension of abstract and concrete verbal materials.
Journal of Experimental Psychololgy, Learning and Memory and Cognition
, 91, 82-102.
Schwanenflugel, P. J., & Stowe, R. W. (1989). Context availability and the processing of abstract and concrete words.
Reading Research Quartely
, 241, 114-126.
Schwanenflugel, P. J., & Akin, C. E. (1994). Developmental trends in lexical decisions for abstract and concrete words.
Reading Research Quarterly
, 291, 251-263.
Sebastián, N., Martí, M. A., Carreiras, M. F., & Cuetos, F. (2000).
LEXESP, léxico informatizado del Español
. Barcelona: Ediciones de la Universitat de Barcelona.
Shepard, R. N. (1987). Toward a universal law of generalization for psychological science.
Science
, 2371, 1317-1323.
Wandmacher, T. 2005. How semantic is latent semantic analysis? In
Proceedings of RECITAL'05
, Dourdan, France.
Cited by (3)
Cited by three other publications
Martínez-Mingo, Alejandro, Guillermo Jorge-Botana, José Ángel Martinez-Huertas & Ricardo Olmos Albacete
2023.
Quantum projections on conceptual subspaces.
Cognitive Systems Research 82
► pp. 101154 ff.
Martínez‐Huertas, José Á., Guillermo Jorge‐Botana & Ricardo Olmos
2021.
Emotional Valence Precedes Semantic Maturation of Words: A Longitudinal Computational Study of Early Verbal Emotional Anchoring.
Cognitive Science 45:7
Jorge-Botana, Guillermo, Ricardo Olmos & Vicente Sanjosé
2017.
Predicting Word Maturity from Frequency and Semantic Diversity: A Computational Study.
Discourse Processes 54:8
► pp. 682 ff.
This list is based on CrossRef data as of 8 july 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.