Article In:
Linguistics in the Netherlands 2024
Edited by Marco Bril and Kristel Doreleijers
[Nota Bene 1:2] 2024
► pp. 179194
References (26)
References
Arnold, Denis, Fabian Tomaschek, Konstantin Sering, Florence Lopez & Harald R. Baayen. 2017. Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit. PloS one, 12 (4): e0174623. DOI logoGoogle Scholar
Baayen, R. Harald, Richard Piepenbrock & Leon Gulikers. 1996. The celex lexical database (cd-rom). Linguistic Data Consortium.Google Scholar
Bates, Douglas, Martin Mächler, Ben Bolker & Steve Walker. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67 (1), 1–48. DOI logoGoogle Scholar
Bertram, Raymond, Harald R. Baayen & Robert Schreuder. 2000. Effects of family size for complex words. Journal of Memory and Language, 42 1, 390–405. DOI logoGoogle Scholar
Bezanson, Jeff, Alan Edelman, Stefan Karpinski & Viral B. Shah. 2017. Julia: A fresh approach to numerical computing. SIAM review, 59 (1), 65–98. DOI logoGoogle Scholar
Chuang, Yu-Ying & Harald R. Baayen. 2021. Discriminative learning and the lexicon: NDL and LDL. In Oxford research encyclopedia of linguistics. DOI logoGoogle Scholar
Chuang, Yu-Ying, Janice Fon, Ioannes Papakyritsis & Harald R. Baayen. 2021. Analyzing phonetic data with generalized additive mixed models. In Manual of clinical phonetics, 108–138. DOI logoGoogle Scholar
Ernestus, Mirjam & Anne Cutler. 2015. Baldey: A database of auditory lexical decisions. Quarterly Journal of Experimental Psychology, 68 1, 1469–1488. DOI logoGoogle Scholar
Heitmeier, Maria, Yu-Ying Chuang, Seth D. Axen & Harald R. Baayen. 2023a. Frequency effects in Linear Discriminative Learning. arXiv preprint arXiv:2306.11044.Google Scholar
Heitmeier, Maria, Yu-Ying Chuang & Harald R. Baayen. 2023b. How trial-to-trial learning shapes mappings in the mental lexicon: Modelling lexical decision with linear discriminative learning. Cognitive Psychology, 146 1, 101598. DOI logoGoogle Scholar
Luo, Xuefeng, Yu-Ying Chuang & Harald R. Baayen. 2020. JudiLing: an implementation in Julia of Linear Discriminative Learning algorithms for language model. Eberhard Karls Universität Tübingen, Seminar für Sprachwissenschaft.Google Scholar
Marslen-Wilson, William D. & Alan Welsh. 1978. Processing interactions and lexical access during word recognition in continuous speech. Cognitive psychology, 10 (1), 29–63. DOI logoGoogle Scholar
Mikolov, Tomas, Kai Chen, Greg Corrado & Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.Google Scholar
Moscoso del Prado Martín, Fermín, Raymond Bertram, Tuomo Häikiö, Robert Schreuder & Harald R. Baayen. 2004. Morphological family size in a morphologically rich language: The case of Finnish compared with Dutch and Hebrew. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30 1, 1271.Google Scholar
Mulder, Kimberley, Ton Dijkstra, Robert Schreuder & Harald R. Baayen. 2014. Effects of primary and secondary morphological family size in monolingual and bilingual word processing. Journal of Memory and Language, 72 1, 59–84. DOI logoGoogle Scholar
Mulder, Kimberley, Robert Schreuder & Ton Dijkstra. 2013. Morphological family size effects in L1 and L2 processing: An electrophysiological study. Language and Cognitive Processes, 28 1, 1004–1035. DOI logoGoogle Scholar
Müller, Hanno, Louis ten Bosch & Mirjam Ernestus. 2024. The family size effect in visual and auditory word recognition. Language, Cognition and Neuroscience, 1–22. DOI logoGoogle Scholar
Nieuwenhuijse, Alexander. 2018. Dutch word2vec model. Retrieved 2022-02-10, from [URL]
Oostdijk, Nelleke. 2000. The Spoken Dutch Corpus. Overview and First Evaluation. In LREC (pp. 887–894).Google Scholar
R Core Team. 2017. R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from [URL]
Rayner, Keith. 1998. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124 (3), 372. DOI logoGoogle Scholar
Shafaei-Bajestan, Elnaz, Masoumeh Moradipour-Tari, Peter Uhrig & Harald R. Baayen. 2023. LDL-AURIS: A computational model, grounded in error-driven learning, for the comprehension of single spoken words. Language, Cognition and Neuroscience, 1–28. DOI logoGoogle Scholar
ten Bosch, Louis, Mirjam Ernestus & Lou Boves. 2018. Analyzing Reaction Time Sequences from Human Participants in Auditory Experiments Proceedings of Interspeech 2018: The 19th Annual Conference of the International Speech Communication Association, pages 971–975.Google Scholar
ten Bosch, Louis, Lou Boves & Mirjam Ernestus. 2022. DIANA, a process-oriented model of human auditory word recognition. Brain Sciences, 12 (5), 681–710. DOI logoGoogle Scholar
Tomaschek, Fabian, Peter Hendrix & Harald R. Baayen. 2018. Strategies for addressing collinearity in multivariate linguistic data. Journal of Phonetics, 71 1, 249–267. DOI logoGoogle Scholar
Wood, Simon. 2015. Package ‘mgcv’. R package version, 1, 29.Google Scholar