# Linguistic formulae as cognitive tools

**Reviel Netz**| Gonville and Caius College, Cambridge

Ancient Greek mathematics developed the original feature of being deductive mathematics. This article attempts to give a (partial) explanation f or this achievement. The focus is on the use of a fixed system of linguistic formulae (expressions used repetitively) in Greek mathematical texts. It is shown that (a) the structure of this system was especially adapted for the easy computation of operations of substitution on such formulae, that is, of replacing one element in a fixed formula by another, and it is further argued that (b) such operations of substitution were the main logical tool required by Greek mathematical deduction. The conclusion explains why, assuming the validity of the description above, this historical level (as against the universal cognitive level) is the best explanatory level for the phenomenon of Greek mathematical deduction.

Published online: 22 May 1999

https://doi.org/10.1075/pc.7.1.07net

https://doi.org/10.1075/pc.7.1.07net

## Cited by

## Cited by 8 other publications

De Cruz, Helen & Johan De Smedt

Hohol, Mateusz & Marcin Miłkowski

Kang, Seokmin & Barbara Tversky

Klein, Perry D.

Tversky, Barbara

Tversky, Barbara & Angela Kessell

This list is based on CrossRef data as of 09 september 2021. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.