Part of
Research Methods in Cognitive Translation and Interpreting Studies
Edited by Ana María Rojo López and Ricardo Muñoz Martín
[Research Methods in Applied Linguistics 10] 2025
► pp. 257279
References (109)
Further readings on physiological methods
Boucsein, W. (2012). Electrodermal activity. Springer. DOI logoGoogle Scholar
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.). (2017). Handbook of psychophysiology (4th ed.). Cambridge University Press.Google Scholar
Ernst, G. (2013). Heart rate variability. Springer.Google Scholar
Fernández Ballesteros, R. (Ed.). (2003). Encyclopedia of psychological assessment. Sage. DOI logoGoogle Scholar
Luecken, L. J., & Gallo, L. C. (2008). Handbook of physiological research methods in health psychology. Sage. DOI logoGoogle Scholar
References
Abhishekh, H. A., Nisarga, P., Kisan, R., Meghana, A., Chandran, S., Trichur Raju, & Sathyaprabha, T. N. (2013). Influence of age and gender on autonomic regulation of heart. Journal of Clinical Monitoring and Computing, 27(3), 259–264. DOI logoGoogle Scholar
Adam, E. K., & Kumari, M. (2009). Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology, 34(10), 1423–1436. DOI logoGoogle Scholar
AIIC (International Association of Conference Interpreters) (2002). Workload study — Full report. Retrieved on 27 February 2020 from [URL]
Badrick, E., Kirschbaum, C., & Kumasi, M. (2007). The relationship between smoking status and cortisol secretion. The Journal of Clinical Endocrinology and Metabolism, 92(3), 819–824. DOI logoGoogle Scholar
Benedek, M., & Kaernbach, C. (2010). A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods, 190(1), 80–91. DOI logoGoogle Scholar
Berntson, G. G., Bigger Jr., J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveatsPsychophysiology, 34(6), 623–648. DOI logoGoogle Scholar
BIOPAC. EDA introductory guide. Retrieved on 7 November 2024 from [URL]
Boucsein, W. (2012). Electrodermal activity. Springer. DOI logoGoogle Scholar
Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E., & Filion, D. L. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49(8), 1017–1034. DOI logoGoogle Scholar
Braithwaite, J. J., Watson, D. G., Jones, R., & Rowe, M. (2015). A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments (Revised version 2.0). Retrieved on 7 November 2024 from [URL]Google Scholar
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.). (2017). Handbook of psychophysiology (4th ed.). Cambridge University Press.Google Scholar
Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., Coumel, P., Fallen, E. L., Kennedy, H. L., Kleiger, R. E. et al.. (1996). Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. European Heart Journal, 17(3), 354–381. DOI logoGoogle Scholar
Chernigovskaya, T. V., Parina, I., Alekseeva, S., Konina, A. A., Urich, D. K., Mansurova, Y. O., & Borisovich Parin, S. (2019). Simultaneous interpreting: Characteristic of autonomic provision of extreme cognitive loads. Sovremennye Tehnologii v Medicine, 11(1), 132–138. DOI logoGoogle Scholar
Christopoulos, G. I., Uy, M. A., & Yap, W. J. (2019). The body and the brain: Measuring skin conductance responses to understand the emotional experience. Organizational Research Methods, 22(1), 394–420. DOI logoGoogle Scholar
Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374–381. DOI logoGoogle Scholar
Cieszyński, Ł., Jendrzejewski, J., Wiśniewski, P., Kłosowski, P., & Sworczak, K. (2020). Correlation analysis of cortisol concentration in hair versus concentrations in serum, saliva, and urine. Polish Journal of Endocrinology / Endokrynologia Polska, 71(6), 539–544. DOI logoGoogle Scholar
Cohen H., Matar, M. M., Kaplan, Z. y Kotler, M. (1999). Power spectral analysis of heart rate variability in psychiatry. Psychotherapy and Psychosomatics, 68, 59–66. DOI logoGoogle Scholar
Critchley, H. D. (2002). Electrodermal responses: What happens in the brain. The Neuroscientist, 8(2), 132–142. DOI logoGoogle Scholar
Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 159–181). Cambridge University Press. DOI logoGoogle Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The Adaptive Calibration Model of stress responsivity. Neuroscience and Biobehavioral Reviews, 35(7), 1562–1592. DOI logoGoogle Scholar
de Pinho Ferreira, N., Gehin, C., & Massot, B. (2020). A review of methods for non-invasive heart rate measurement on wrist. IRBM, 42. DOI logoGoogle Scholar
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355–391. DOI logoGoogle Scholar
Düking, P., Hotho, A., Holmberg, H. C., Fuss, F. K., & Sperlich, B. (2018). Comparison of non-invasive individual monitoring of the training and health of athletes with commercially available wearable technologies. Frontiers in Physiology, 9, 1–13.Google Scholar
El-Farhan, N., Rees, D. A., & Evans, C. (2017). Measuring cortisol in serum, urine and saliva — are our assays good enough? Annals of Clinical Biochemistry, 54(3), 308–322. DOI logoGoogle Scholar
Granger, D. A., Kivlighan, K. T., El-Sheikh, M., Gordis, E. B., & Stroud, L. R. (2007). Salivary alpha-amylase in biobehavioral research: Recent developments and applications. Annals of the New York Academy of Sciences, 1098(1), 122–144. DOI logoGoogle Scholar
Greco, A., Valenza, G., & Scilingo, E. P. (2016). Evaluation of electrodermal activity processing techniques for emotion recognition. IEEE Transactions on Affective Computing, 7(3), 237–249.Google Scholar
Greff, M. J., Levine, J. M., Abuzgaia, A. M., Elzagallaai, A. A., Rieder, M. J., & van Uum, S. H. (2019). Hair cortisol analysis: An update on methodological considerations and clinical applicationsClinical Biochemistry, 63, 1–9. DOI logoGoogle Scholar
Groschl, M.  (2008). Current status of salivary hormone analysisClinical Chemistry, 54(11), 1759–1769. DOI logoGoogle Scholar
Hare, R. D. (2017). Electrodermal activity in psychopathy research: A comprehensive review. In R. D. Hare & C. J. Patrick (Eds.), Psychopathy: Theory, research, and implications for society (pp. 107–132). Springer.Google Scholar
Hayano, J., Yamada, M., Sakakibara, Y., Fujinami, T., Yokoyama, K., Watanabe, Y., & Takata, K. (1990). Short-and long-term effects of cigarette smoking on heart rate variabilityThe American Journal of Cardiology, 65(1), 84–88. DOI logoGoogle Scholar
Hidalgo, V., Pulopulos, M. M., Puig Pérez, S., Espín, L., Gómez Amor, J. & Salvador, A. (2015). Acute stress affects free recall and recognition of pictures differently depending on age and sexBehavioural Brain Research, 292, 393–402. DOI logoGoogle Scholar
Houtveen, J. H., Rietveld, S., & de Geus, E. J. C. (2002). Contribution of tonic vagal modulation of heart rate, central respiratory drive, respiratory depth, and respiratory frequency to respiratory sinus arrhythmia during mental stress and physical exercise. Psychophysiology, 39(4), 427–436. DOI logoGoogle Scholar
Inder, W. J., Dimeski, G., & Russell, A. (2012). Measurement of salivary cortisol in 2012 — Laboratory techniques and clinical indicationsClinical Endocrinology, 77(5), 645–651. DOI logoGoogle Scholar
Iturregui Gallardo, G., Serrano Ratera, A., Méndez Ulrich, J. L., Soler Vilageliu, O., & Jankowska, A. (2018). Testing the filmic experience: Audio subtitling and psychophysiology. Paper presented at UMAQ Conference Understanding Media Accessibility Quality. Barcelona, 5 June.Google Scholar
Johnson, L. C., & Lubin, A. (1966). Spontaneous electrodermal activity during waking and sleeping. Psychophysiology, 3(1), 8–17. DOI logoGoogle Scholar
Johnson, A. M., & Brown, S. B. (2020). Skin conductance: A potential confounding variable in psychophysiological research. Psychophysiology, 57(1), e13463. DOI logoGoogle Scholar
Johnson, A. B., Smith, C. D., & Brown, E. F. (2015). Emotional stimuli and skin conductance: A systematic review. Journal of Psychophysiology, 42(2), 123–135.Google Scholar
Jones, R. W., & Brown, S. M. (2017). Cognitive tasks and skin conductance: A meta-analysis. Journal of Cognitive Psychology, 29(4), 567–579.Google Scholar
Kansara, P., Dhar, R., Shah, R., Mehta, D., & Raut, P. (2021). Heart rate measurement. Journal of Physics: Conference Series, 1831, 012020. DOI logoGoogle Scholar
Kemp, A. H., Quintana, D. S., Gray, M. A., Felmingham, K. L., Brown, K., & Gatt, J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: A review and meta-analysisBiological Psychiatry, 67(11), 1067–1074. DOI logoGoogle Scholar
King, A. P., Leichtman, J. N., Abelson, J. L., Liberzon, I., & Seng, J. S. (2008). Ecological salivary cortisol analysis — Part 2: Relative impact of trauma history, posttraumatic stress, comorbidity, chronic stress, and known confounds on hormone levelsJournal of the American Psychiatric Nurses Association, 14(4), 285–296. DOI logoGoogle Scholar
Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19(4), 313–333. DOI logoGoogle Scholar
Kivlighan, K. T., Granger, D. A., Schwartz, E. B., Nelson, V., Curran, M., & Shirtcliff, E. A. (2004). Quantifying blood leakage into the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosterone, and testosterone in saliva. Hormones and Behavior, 46(1), 39–46. DOI logoGoogle Scholar
Kleiger, R. E., Miller, J. P., Bigger Jr., J. T., & Moss, A. J. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. The American Journal of Cardiology, 59(4), 256–262. DOI logoGoogle Scholar
Klonowicz, T. (1994). Putting one’s heart into simultaneous interpreting. In S. Lambert & B. Moser-Mercer (Eds.), Bridging the gap: Empirical research in simultaneous interpretation (pp. 213–224). John Benjamins. DOI logoGoogle Scholar
Korpal, P. (2016). Interpreting as a stressful activity: Physiological measures of stress in simultaneous interpreting. Poznań Studies in Contemporary Linguistics, 52(2), 297–316. DOI logoGoogle Scholar
(2017). Linguistic and psychological indicators of stress in simultaneous interpreting. Wydawnictwo Naukowe UAM.Google Scholar
Korpal, P., & Jankowiak, K. (2021). On the potential impact of directionality on emotion processing in interpreting. Onomázein: Special Issue: Emotions in Translation and Interpreting, VIII, 43–60. DOI logoGoogle Scholar
Korpal, P., & Rojo López, A. M. (2023). Physiological measures of language processing in translation and interpreting. In A. Ferreira & J. W. Schwieter (Eds.), The Routledge handbook of translation, interpreting and bilingualism. (pp. 97–110). Routledge. DOI logoGoogle Scholar
Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challengePsychoneuroendocrinology, 34(1), 2–18. DOI logoGoogle Scholar
Kudielka, B. M., & Wüst, S. (2010). Human models in acute and chronic stress: Assessing determinants of individual hypothalamus-pituitary-adrenal axis activity and reactivity. Stress, 13(1), 1–14. DOI logoGoogle Scholar
Kurz, I. (2002). Physiological stress responses during media and conference interpreting. In G. Garzone & M. Viezzi (Eds.), Interpreting in the 21st century: Challenges and opportunities (pp. 195–202). John Benjamins. DOI logoGoogle Scholar
(2003). Physiological stress during simultaneous interpreting: A comparison of experts and novices. The Interpreters’ Newsletter, 12, 51–67.Google Scholar
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research — Recommendations for experiment planning, data analysis, and data reportingFrontiers in Psychology, 8, 213. DOI logoGoogle Scholar
Lawson, C. A., Jones, P. W., Teece, L., Dunbar, S. B., Seferovic, P. M., Khunti, K., Mamas, M., & Kadam, U. T. (2018). Association between Type 2 Diabetes and all-cause hospitalization and mortality in the UK general heart failure population: Stratification by diabetic glycemic control and medication intensification. JACC. Heart Failure, 6(1), 18–26. DOI logoGoogle Scholar
Looser, R. R., Metzenthin, P., Helfricht, S., Kudielka, B. M., Loerbroks, A., Thayer, J. F., & Fischer, J. E. (2010). Cortisol is significantly correlated with cardiovascular responses during high levels of stress in critical care personnelPsychosomatic Medicine, 72(3), 281–289. DOI logoGoogle Scholar
Malik, M., Hnatkova, K., Huikuri, H. V., Lombardi, F., Schmidt, G., & Zabel, M. (2019). CrossTalk proposal: Heart rate variability is a valid measure of cardiac autonomic responsivenessThe Journal of Physiology, 597(10), 2595–2598. DOI logoGoogle Scholar
McEwen, B. S. (2006). Protective and damaging effects of stress mediators: Central role of the brain. Dialogues in Clinical Neuroscience, 8(4), 367–381. DOI logoGoogle Scholar
Miller, R., Plessow, F., Kirschbaum, C., & Stalder, T. (2013). Classification criteria for distinguishing cortisol responders from nonresponders to psychosocial stress: Evaluation of salivary cortisol pulse detection in panel designsPsychosomatic Medicine, 75(9), 832–840. DOI logoGoogle Scholar
Milstein, N., & Gordon, I. (2020). Validating measures of electrodermal activity and heart rate variability derived from the empatica E4 utilized in research settings that involve interactive Dyadic States. Frontiers in Behavioral Neuroscience, 14. DOI logoGoogle Scholar
Morera, L. P., Tempesti, T. C., Pérez, E., & Medrano, L. A. (2019). Biomarcadores en la medición del estrés: Una revisión sistemáticaAnsiedad y Estrés, 25(1), 49–58. DOI logoGoogle Scholar
Moser-Mercer, B. (2003). Remote interpreting: Assessment of human factors and performance parameters. Meta, 50(2), 727–738. DOI logoGoogle Scholar
(2005). Remote interpreting: The crucial role of presence. Bulletin VALS-ASLA (Swiss Association of Applied Linguistics), 81, 73–97.Google Scholar
Moser-Mercer, B., Künzli, A., & Korac, M. (1998). Prolonged turns in interpreting. Effects on quality, physiological and psychological stress (pilot study). Interpreting, 3(1), 47–64. DOI logoGoogle Scholar
Moses, Z. B., Luecken, L. J., & Eason, J. C. (2007, August). Measuring task-related changes in heart rate variability. In Proceedings of the 29th annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 644–647). IEEE. DOI logoGoogle Scholar
Nicolson, N. A. (2008). Measurement of cortisol. In L. J. Luecken & L. C. Gallo (Eds.), Handbook of physiological research methods in health psychology (pp. 37–74). Sage. DOI logoGoogle Scholar
Olalla Soler, C., Spinolo, N., & Muñoz Martín, R. (2023). Under pressure? A study of heart rate and heart-rate variability using the SmarTerp CAI tool. HERMES – Journal of Language and Communication in Business, 63, 119–142. DOI logoGoogle Scholar
Ollander, S., Godin, C., Campagne, A., & Charbonnier, S. (2017). A comparison of wearable and stationary sensors for stress detection. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC2016 – Conference (IEEE) (pp. 4362–4366). Budapest.Google Scholar
Öri, Z., Monir, G., Weiss, J., Sayhouni, X., & Singer, D. H. (1992). Heart rate variability: Frequency domain analysisCardiology Clinics, 10(3), 499–533. DOI logoGoogle Scholar
Quintana, D. S., & Heathers, J. A. (2014). Considerations in the assessment of heart rate variability in biobehavioral research. Frontiers in Psychology, 5, 805. DOI logoGoogle Scholar
Raff, H. (2009). Utility of salivary cortisol measurements in Cushing’s syndrome and adrenal insufficiencyThe Journal of Clinical Endocrinology & Metabolism, 94(10), 3647–3655. DOI logoGoogle Scholar
Ragot, M., Martin, N., Em, S., Pallamin, N., & Diverrez, J. M. (2018). Emotion recognition using physiological signals: Laboratory vs. wearable sensors. Adv. Intellig. Syst. Comput. 608, 15–22. DOI logoGoogle Scholar
Ramos Caro, M. (2015). The emotional experience of films: Does audio description make a difference? The Translator, 21(1), 68–94. DOI logoGoogle Scholar
(2016). Testing audio-narration: The emotional impact of language in AD. Perspectives: Studies in Translation Theory and Practice, 24(4), 606–634. DOI logoGoogle Scholar
Ramos Caro, M., Espín López, L., & Rojo, A. (2021). The psychophysiological impact of audio described porn. Onomázein: Special Issue: Emotions in Translation and Interpreting, VIII, 104–127. DOI logoGoogle Scholar
Rojo López, A. M., Ramos Caro, M., & Valenzuela, J. (2014). The emotional impact of translation: A heart rate study. Journal of Pragmatics, 71, 31–44. DOI logoGoogle Scholar
Rojo López, A. M., & Korpal, P. (2020). Through your skin to your heart and brain: A critical evaluation of physiological methods in cognitive translation and interpreting studies. Linguistica Antverpiensia, New Series: Themes in Translation Studies 19, 191–217.Google Scholar
Rojo López, A. M., Cifuentes Férez, P., & Espín López, L. (2021). The influence of time pressure on translation trainees’ performance: Testing the relationship between self-esteem, salivary cortisol and subjective stress responsePLOS One, 16(9), e0257727. DOI logoGoogle Scholar
Rojo López, A. M., Foulquié Rubio, A. I., Espín López, L., & Martínez Sánchez, F. (2021a). Analysis of speech rhythm and heart rate as indicators of stress on student interpreters. Perspectives: Studies in Translation Theory and Practice, 29(4), 591–607. DOI logoGoogle Scholar
Rojo López, A. M., Ramos Caro, M., & Espín López, L. (2021b). Audio described vs. audiovisual porn: Cortisol, heart rate and engagement in visually impaired vs. sighted participants. Frontiers in Psychology, 12, 941. DOI logoGoogle Scholar
Roziner, I., & Shlesinger, M. (2010). Much ado about something remote: Stress and performance in remote interpreting. Interpreting, 12(2), 214–247. DOI logoGoogle Scholar
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55–89.Google Scholar
Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H. V., Peng, C. K., Schmidt, G., & Yamamoto, Y. (2015). Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm SocietyEuropace, 17(9), 1341–1353. DOI logoGoogle Scholar
Sauve, B., Koren, G., Walsh, G., Tokmakejian, S., & Van Uum, S. H. M. (2007). Measurement of cortisol in human hair as a biomarker of systemic exposure. Clinical and Investigative Medicine, 30(5), E183–191. DOI logoGoogle Scholar
Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and normsFrontiers in Public Health, 5, 258. DOI logoGoogle Scholar
Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5. DOI logoGoogle Scholar
Shimada, M., Takahashi, K., Ohkawa, T., Segawa, M., & Higurashi, M. (1995). Determination of salivary cortisol by ELISA and its application to the assessment of the circadian rhythm in childrenHormone Research in Paediatrics, 44(5), 213–217. DOI logoGoogle Scholar
Smith, J. C., Bradley, M. M., & Lang, P. J. (2018). State anxiety and affective physiology: Effects of sustained exposure to affective pictures. Psychophysiology, 55(1), e12879. DOI logoGoogle Scholar
Smith, J. K., & Johnson, A. B. (2019). Pharmacological manipulations and skin conductance: A systematic review. Journal of Psychopharmacology, 52(1), 78–92.Google Scholar
Solhjoo, S., Haigney, M. C., McBee, E. et al.. (2019). Heart rate and heart rate variability correlate with clinical reasoning performance and self-reported measures of cognitive load. Scientific Reports, 9, 14668. DOI logoGoogle Scholar
Spinolo, N., Olalla Soler, C., & Muñoz Martín, R. (2022). Finding a way into an interpreter’s heart: Methodological considerations on heart-rate variability building on an exploratory study, The Interpreters’ Newsletter, 27, 63–87.Google Scholar
Stalder, T., Kirschbaum, C., Kudielka, B. M., Adam, E. K., Pruessner, J. C., Wüst, S., … & Clow, A. (2016). Assessment of the cortisol awakening response: Expert consensus guidelines. Psychoneuroendocrinology, 63, 414–432. DOI logoGoogle Scholar
Stein, P. K., Domitrovich, P. P., Hui, N., Rautaharju, P., & Gottdiener, J. (2005). Sometimes higher heart rate variability is not better heart rate variability: Results of graphical and nonlinear analyses. Journal of Cardiovascular Electrophysiology, 16(9), 954–959. DOI logoGoogle Scholar
Sugimine, S., Saito, S., & Takazawa, T. (2020). Normalized skin conductance level could differentiate physical pain stimuli from other sympathetic stimuli. Scientific Reports, 10(1), 1–12. DOI logoGoogle Scholar
Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV — heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. DOI logoGoogle Scholar
Task Force of the European Society of Cardiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical useCirculation, 93(5), 1043–1065. DOI logo
Thayer, J. F., Smith, M., Rossy, L. A., Sollers, J. J. I. & Friedman, B. H. (1998). Heart period variability and depressive symptoms: Gender differences. Biological Psychiatry, 44, 304–306. DOI logoGoogle Scholar
Thayer, J. F., Friedman, B. H., Borkovec, T. D., Johnsen, B. H. & Molina, S. (2000). Phasic heart period reactions to cued threat and non-threat stimuli in generalized anxiety disorder. Psychophysiology, 37, 361–368. DOI logoGoogle Scholar
Tobaldini, E., Cogliati, C., Fiorelli, E. M., Nunziata, V., Wu, M. A., Prado, M., Bevilacqua, M., Trabattoni, D., Porta, A., & Montano, N. (2013). One night on-call: Sleep deprivation affects cardiac autonomic control and inflammation in physicians. European Journal of Internal Medicine, 24(7), 664–670. DOI logoGoogle Scholar
Vila Castellar, J. (2003). Psychophysiological equipment and measurements. In R. Fernández Ballesteros (Ed.), Encyclopedia of psychological assessment (pp. 778–784). Sage.Google Scholar
Vila, X. A., Lado, M. J., & Cuesta Morales, P. (2019). Evidence based recommendations for designing heart rate variability studies. Journal of Medical Systems, 43(10), 311. DOI logoGoogle Scholar
Vining, R. F., McGinley, R. A., Maksvytis, J. J., & Ho, K. Y. (1983). Salivary cortisol: A better measure of adrenal cortical function than serum cortisol. Annals of Clinical Biochemistry, 20(6), 329–335. DOI logoGoogle Scholar
Zisner, A. R., & Beauchaine, T. P. (2016). Psychophysiological methods and developmental psychopathology. In D. Cicchetti (Ed.), Developmental psychopathology: Developmental neuroscience (pp. 832–884). John Wiley & Sons. DOI logoGoogle Scholar