Article published In:
Register Studies
Vol. 1:1 (2019) ► pp.100135
References (139)
References
Abbasi, A., & Chen, H. (2007). Categorization and analysis of text in computer mediated communication archives using visualization. In Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries (pp. 11–18). New York: ACM.Google Scholar
Aizawa, A. (2003). An information-theoretic perspective of tf–idf measures. Information Processing & Management, 39(1), 45–65. DOI logoGoogle Scholar
Amasyalı, M. F., & Diri, B. (2006). Automatic Turkish text categorization in terms of author, genre and gender. In International Conference on Application of Natural Language to Information Systems (pp. 221–226). Berlin: Springer.Google Scholar
Argamon-Engelson, S., Koppel, M., Avneri, G. (1998). Style-based text categorization: What newspaper am I reading? In Proc. of AAAI Workshop on Learning for Text Categorization, 1998 (pp. 1–4).Google Scholar
Argamon, S., & Levitan, S. (2005). Measuring the usefulness of function words for authorship attribution. In Proceedings of the 2005 ACH/ALLC Conference.Google Scholar
Argamon, S., & Koppel, M. (2010). The rest of the story: Finding meaning in stylistic variation. In The structure of style (pp. 79–112). Berlin: Springer. DOI logoGoogle Scholar
Argamon, S., Dodick, J., & Chase, P. (2008). Language use reflects scientific methodology: A corpus-based study of peer-reviewed journal articles. Scientometrics, 75(2), 203–238. DOI logoGoogle Scholar
Argamon, S., Koppel, M., Fine, J., & Shimoni, A. R. (2003). Gender, genre, and writing style in formal written texts. Text, 23(3), 321–346. DOI logoGoogle Scholar
Argamon, S., Whitelaw, C., Chase, P., Hota, S. R., Garg, N., & Levitan, S. (2007). Stylistic text classification using functional lexical features. Journal of the American Society for Information Science and Technology, 58(6), 802–822. DOI logoGoogle Scholar
Atkinson, D. (1992). The evolution of medical research writing from 1735 to 1985: The case of the Edinburgh Medical Journal. Applied Linguistics, 13(4), 337–374. DOI logoGoogle Scholar
Bateman, J. A., Maier, E. A., Teich, E., & Wanner, L. (1991). Towards an architecture for situated text generation. In Proceedings of the ICCICL (pp. 289–302).Google Scholar
Belz, A. (2005). Statistical generation: Three methods compared and evaluated. In Proceedings of ENLG-2005 (pp. 15–23).Google Scholar
Berber Sardinha, T. (2017). Text types in Brazilian Portuguese: A multi-dimensional perspective. Corpora, 12(3), 483–515. DOI logoGoogle Scholar
Biber, D. (1989). A typology of English texts. Linguistics, 27(1), 3–44. DOI logoGoogle Scholar
(1991). Variation across speech and writing. Cambridge: Cambridge University Press.Google Scholar
(1995). Dimensions of register variation: A cross-linguistic comparison. Cambridge: Cambridge University Press. DOI logoGoogle Scholar
(2003). Variation among university spoken and written registers: A new multi-dimensional analysis. Language and Computers, 461, 47–70.Google Scholar
(2004). Conversation text types: A multi-dimensional analysis. In Le poids des mots: Proc. of the 7th International Conference on the Statistical Analysis of Textual Data (pp. 15–34). Louvain: Presses universitaires de Louvain.Google Scholar
Biber, D., & Barbieri, F. (2007). Lexical bundles in university spoken and written registers. English for Specific P_urposes, 26(3), 263–286. DOI logoGoogle Scholar
Biber, D., & Conrad, S. (2001). Register variation: A corpus approach. In D. Schiffrin, D. Tannen, & H. E. Hamilton (Eds.), The handbook of discourse analysis (pp. 175–196). Malden, MA: Blackwell.Google Scholar
(2009). Register, genre, and style. Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Biber, D., & Finegan, E. (2001). Diachronic relations among speech-based and written registers in English. In S. Conrad & D. Biber (Eds.), Variation in English: Multi-dimensional studies (pp. 66–83). Harlow: Pearson Education.Google Scholar
Brooke, J., Wang, T., & Hirst, G. (2010). Automatic acquisition of lexical formality. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters (pp. 90–98). Stroudsburg, PA: Association for Computational Linguistics.Google Scholar
Carroll, J., Minnen, G., & Briscoe, T. (1999). Corpus annotation for parser evaluation. In Proceedings of the EACL workshop on LINC, June 1999.Google Scholar
Clarke, I., & Grieve, J. (2017). Dimensions of abusive language on twitter. In Proceedings of the First Workshop on Abusive Language Online (pp. 1–10).Google Scholar
Cohen, W. W. (1995). Fast effective rule induction. In Proceedings 12th International Conference on Machine Learning (pp. 115–123). Burlington MA: Morgan Kaufmann.Google Scholar
Conrad, S. M. (1996). Investigating academic texts with corpus-based techniques: An example from biology. Linguistics and Education, 8(3), 299–326. DOI logoGoogle Scholar
Crowston, K., & Kwasnik, B. H. (2003). Can document-genre metadata improve information access to large digital collections? Library Trends, 52(2), 345–361.Google Scholar
Crystal, D. (2011). Internet linguistics: A student guide. London: Routledge. DOI logoGoogle Scholar
Damashek, M. (1995). Gauging similarity with n-grams: Language-independent categorization of text. Science, 267(5199), 843–848. DOI logoGoogle Scholar
De Vel, O., Anderson, A., Corney, M., & Mohay, G. (2001). Mining e-mail content for author identification forensics. ACM Sigmod Record, 30(4), 55–64. DOI logoGoogle Scholar
Degaetano-Ortlieb, S., Kermes, H., Khamis, A., & Teich, E. (2016). An information-theoretic approach to modeling diachronic change in scientific English. In C. Suhr, T. Nevalainen, & I. Taavitsainen (Eds.), Selected papers from Varieng – From data to evidence (d2e), Helsinki, Finland. Leiden: Brill.Google Scholar
Diederich, J., Kindermann, J., Leopold, E., & Paass, G. (2003). Authorship attribution with support vector machines. Applied Intelligence, 19(1–2), 109–123. DOI logoGoogle Scholar
DiMarco, C., & Foster, M. E. (1997). The automated generation of Web documents that are tailored to the individual reader. In Proceedings of the AAAI-97 Spring Symposium on Natural Language Processing for the World Wide Web, Stanford, CA.Google Scholar
Dong, L., Watters, C., Duffy, J., & Shepherd, M. (2008). An examination of genre attributes for web page classification. In Proceedings of HICSS (pp. 133). IEEE.Google Scholar
Eisenstein, J., Smith, N. A., & Xing, E. P. (2011). Discovering sociolinguistic associations with structured sparsity. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 11 (pp. 1365–1374). Stroudsburg, PA: Association for Computational Linguistics.Google Scholar
Ficler, J., & Goldberg, Y. (2017). Controlling linguistic style aspects in neural language generation. In Proceedings from the Conference on Empirical Methods in Natural Language Processing (EMNLP) Workshop on Stylistic Variation (pp. 94–104). DOI logoGoogle Scholar
Finn, A., & Kushmerick, N. (2006). Learning to classify documents according to genre. Journal of the American Society for Information Science and Technology, 57(11), 1506–1518. DOI logoGoogle Scholar
Freund, L., Clarke, C. L., & Toms, E. G. (2006). Towards genre classification for IR in the workplace. In Proceedings of the 1st International Conference on Information Interaction in Context (pp. 30–36). ACM. DOI logoGoogle Scholar
Fu, Z., Tan, X., Peng, N., Zhao, D. & Yan, R. (2018). Style transfer in text: Exploration and evaluation. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Google Scholar
Gatt, A., & Krahmer, E. (2018). Survey of the state of the art in natural language generation: Core tasks, applications and evaluation. Journal of Artificial Intelligence Research, 611, 65–170. DOI logoGoogle Scholar
Genkin, A., Lewis, D., & Madigan, D. (2006). Large-scale Bayesian logistic regression for text categorization. Technometrics, 49(3), 291–304. DOI logoGoogle Scholar
Giesbrecht, E., & Evert, S. (2009). Is part-of-speech tagging a solved task? An evaluation of POS taggers for the German web as corpus. In Proceedings of the Fifth Web as Corpus Workshop (pp. 27–35).Google Scholar
Glover, A., & Hirst, G. (1996). Detecting stylistic inconsistencies in collaborative writing. In M. Sharples & T. van der Geest (Eds.), The New Writing Environment (pp. 147–168). London: Springer. DOI logoGoogle Scholar
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems 271 (pp. 2672–2680).Google Scholar
Goutte, C., & Gaussier, E. (2005, March). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In European Conference on Information Retrieval (pp. 345–359). Berlin: Springer.Google Scholar
Gries, S. T., & Mukherjee, J. (2010). Lexical gravity across varieties of English: An ICE-based study of n-grams in Asian Englishes. International Journal of Corpus Linguistics, 15(4), 520–548. DOI logoGoogle Scholar
Gries, S. T., Newman, J., & Shaoul, C. (2011). N-grams and the clustering of registers. Empirical Language Research Journal, 5(11).Google Scholar
Grieve, J., Biber, D., Friginal, E. & Nekrasova, T. (2010). Variation among blogs: A multi-dimensional analysis. In Genres on the Web (pp. 303–322). Springer, Dordrecht.DOI logoGoogle Scholar
Grieve, J., Biber, D., Friginal, E. and Nekrasova, T. (2010). Variation among blogs: A multi-dimensional analysis. In A. Mehler, S. Sharoff, & M. Santini (Eds.), Genres on the Web (pp. 303–322). Dordrecht: Springer. DOI logoGoogle Scholar
Halliday, M., & Hasan, R. (1989). Language, Context, and text: Aspects of language in a social-semiotic perspective, 2nd ed. Oxford: Oxford University Press.Google Scholar
Halliday, M. A., McIntosh, A., & Strevens, P. (1968). The users and uses of language. In J. Fischman (Ed.), Readings in the sociology of language (139–169). The Hague: Mouton. DOI logoGoogle Scholar
Halliday, M. A. K., & Matthiessen, C. (2004). An introduction to functional grammar. London: Routledge.Google Scholar
Hammerton, J., Osborne, M., Armstrong, S., & Daelemans, W. (2002). Introduction to special issue on machine learning approaches to shallow parsing. Journal of Machine Learning Research, 21, 551–558.Google Scholar
Herring, S., Johnson, D. A., & DiBenedetto, T. (1995). This discussion is going too far!: Male resistance to female participation on the internet. In K. Hall & M. Bucholtz (Eds.), Gender articulated: Language and the socially constructed self (pp. 67–96). New York: Routledge.Google Scholar
Herring, S. C., & Paolillo, J. C. (2006). Gender and genre variation in weblogs. Journal of Sociolinguistics, 10(4), 439–459. DOI logoGoogle Scholar
Heylighen, F., & Dewaele, J. (1999). Formality of language: definition, measurement and behavioral determinants. Interner Bericht, Center “Leo Apostel”, Vrije Universiteit Brüssel.Google Scholar
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780. DOI logoGoogle Scholar
Holmes, D. (1998). The evolution of stylometry in humanities scholarship. Literary and Linguistic Computing, 13(3), 111–117. DOI logoGoogle Scholar
Hoorn, J. F., Frank, S. L., Kowalczyk, W., & van Der Ham, F. (1999). Neural network identification of poets using letter sequences. Literary and Linguistic Computing, 14(3), 311–338. DOI logoGoogle Scholar
Hovy, E., Lavid, J., Maier, E., Mittal, V., & Paris, C. (1992). Employing knowledge resources in a new text planner architecture. In Aspects of automated natural language generation (pp. 57–72). Berlin, Heidelberg: Springer. DOI logoGoogle Scholar
Hovy, E. H. (1990). Pragmatics and natural language generation. Artificial Intelligence, 43(2), pp.153–197. DOI logoGoogle Scholar
(1991). Approaches to the planning of coherent text. In R. Dale, E. Hovy, D. Rösner, & O. Stock (Eds.), Natural language generation in artificial intelligence and computational linguistics (pp. 83–102). Boston, MA: Springer. DOI logoGoogle Scholar
Husson, F., Lê, S., & Pags, J. (2010). Exploratory multivariate analysis by example using R. London: Chapman & Hall CRC. DOI logoGoogle Scholar
Jhamtani, H., Gangal, V., Hovy, E., & Nyberg, E. (2017). Shakespearizing modern language using copy-enriched sequence to sequence models. In Proceedings of the Workshop on Stylistic Variation at EMNLP 2017 (pp. 10–19). DOI logoGoogle Scholar
Johansson, S., Leech, G. N., & Goodluck, H. (1978). Manual of information to accompany the Lancaster-Oslo/Bergen Corpus of British English, for use with digital computer. Oslo: Department of English, University of Oslo.Google Scholar
Jolliffe, I. (2011). Principal component analysis. In M. Lovric (Ed.), International encyclopedia of statistical science (pp. 1094–1096). Berlin: Springer. DOI logoGoogle Scholar
Kakkonen, T., & Sutinen, E. (2008). Coverage-based evaluation of parser generalizability. In Proceedings of the Third International Joint Conference on Natural Language Processing, Volume–II1.Google Scholar
Kan, M. Y., & McKeown, K. R. (2002). Corpus-trained text generation for summarization. In Proceedings of the International Natural Language Generation Conference (pp. 1–8).Google Scholar
Kanaris, I., & Stamatatos, E. (2007). Webpage genre identification using variable-length character n-grams. In Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence (p. 3–10). Washington, DC. DOI logoGoogle Scholar
Karlgren, J. (1999). Stylistic experiments in information retrieval. In T. Strzalkowski (Ed.) Natural Language Information Retrieval (pp. 147–166). Dordrecht: Springer. DOI logoGoogle Scholar
Kešelj, V., Peng, F., Cercone, N., & Thomas, C. (2003). N-gram-based author profiles for authorship attribution. In Proceedings of the Conference Pacific Association for Computational Linguistics, PACLING, 31 (pp. 255–264).Google Scholar
Kjell, B. (1994a). Authorship attribution of text samples using neural networks and Bayesian classifiers. In IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX. DOI logoGoogle Scholar
Kjell, B., Woods, W. A., Frieder, O. (1995). Information retrieval using letter tuples with neural network and nearest neighbor classifiers. In IEEE International Conference on Systems, Man and Cybernetics (Vol., pp. 1222–1225). Vancouver, BC.Google Scholar
Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., & Herbst, E. (2007). Moses: open source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions. DOI logoGoogle Scholar
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In C. S. Mellish (Ed.). Proceedings IJCAI-95, 14(2), 1137–1145. Montreal, Quebec.Google Scholar
Koller, D., Friedman, N., & Bach, F. (2009). Probabilistic graphical models: Principles and techniques. Cambridge, MA: The MIT press.Google Scholar
Koppel, M., Argamon, S., & Shimoni, A. R. (2002). Automatically categorizing written texts by author gender. Literary and Linguistic Computing, 17(4), 401–412. DOI logoGoogle Scholar
Koppel, M., & Schler, J. (2003). August. Exploiting stylistic idiosyncrasies for authorship attribution. In Proceedings of IJCAI’03 Workshop on Computational Approaches to Style Analysis and Synthesis (Vol. 691, pp. 72–80).Google Scholar
Koppel, M., Schler, J., & Zigdon, K. (2005). Determining an author’s native language by mining a text for errors. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (pp. 624–628). ACM. DOI logoGoogle Scholar
Langkilde-Geary, I. (2002). An empirical verification of coverage and correctness for a general-purpose sentence generator. In Proceedings of the International Natural Language Generation Conference (pp. 17–24).Google Scholar
Lee, D. (2001). Genres, registers, text types, domains, and styles: Clarifying the concepts and navigating a path through the BNC jungle. Language Learning and Technology, 5(3). 37–72.Google Scholar
Loehlin, J. C. (1998). Latent variable models: An introduction to factor, path, and structural analysis. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Louwerse, M. M., & Graesser, A. C. (2004). Coherence in discourse. In P. Strazny (Ed.), Encyclopedia of linguistics. Chicago, IL: Fitzroy Dearborn.Google Scholar
Lowe, D., & Matthews, R. (1995), Shakespeare vs. Fletcher: A stylometric analysis by radial basis functions. Computers and the Humanities, 291, 449–461. DOI logoGoogle Scholar
Madigan, D., Genkin, A., Lewis, D. D., Argamon, S., Fradkin, D., & Ye, L. (2006). Author identification on the large scale. In Proc. of Classification Society of N. America, 2005.Google Scholar
Mann, W. C., & Thompson, S. A. (1988). Rhetorical structure theory: Toward a functional theory of text organization. Text-Interdisciplinary Journal for the Study of Discourse, 8(3), 243–281. DOI logoGoogle Scholar
Marcu, D. (2000). The theory and practice of discourse parsing and summarization. Cambridge: The MIT press. DOI logoGoogle Scholar
(1997). From local to global coherence: A bottom-up approach to text planning. In AAAI/IAAI (pp. 629–635).Google Scholar
Martin, J. H., & Jurafsky, D. (2000). Speech and language processing. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Martin, J. R. (1992). English text: System and structure. Amsterdam: John Benjamins. DOI logoGoogle Scholar
Matthews, R., & Merriam, T. (1993). Neural computation in stylometry : An application to the works of Shakespeare and Fletcher. Literary and Linguistic Computing, 8(4), 203–209. DOI logoGoogle Scholar
Matthiessen, C. M. I. M. (2015). Register in the round: Registerial cartography. Functional Linguistics, 2(1), 9. DOI logoGoogle Scholar
Matthiessen, C. M. I. M., & Teruya, K. (2015). Grammatical realizations of rhetorical relations in different registers. Word, 61(3), 232–281. DOI logoGoogle Scholar
McKeown, K., Kukich, K., & Shaw, J. (1994). Practical issues in automatic documentation generation. In Proceedings of the Fourth Conference on Applied Natural Language Processing (pp. 7–14). Stroudsburg, PA: Association for Computational Linguistics. DOI logoGoogle Scholar
Merriam, T., & Matthews, R. (1994). Neural compuation in stylometry II: An application to the works of Shakespeare and Marlowe. Literary and Linguistic Computing 91, 1–6. DOI logoGoogle Scholar
Moore, J. D., & Paris, C. L. (1993). Planning text for advisory dialogues: Capturing intentional and rhetorical information. Computational Linguistics, 19(4), 651–694.Google Scholar
Morato, J., Llorens, J., Génova, G., & Moreiro, J. A. (2003). Experiments in discourse analysis impact on information classification and retrieval algorithms. Information Processing & Management, 39(6), 825–851. DOI logoGoogle Scholar
Mosquera, A., & Moreda, P. (2012). A qualitative analysis of informality levels in web 2.0 texts: The Facebook case study. In Proceedings of the LREC workshop:@ NLP can u tag# user generated content (pp. 23–29).Google Scholar
Nowson, S. (2006). The language of weblogs: A study of genre and individual differences. Unpublished PhD dissertation. University of Edinburgh.Google Scholar
Nowson, S., Oberlander, J., & Gill, A. J. (2005). Weblogs, genres and individual differences. In Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 1666–1671). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Och, F. J., & Ney, H. (2003). A systematic comparison of various statistical alignment models. Computational Linguistics, 29(1), 19–51. DOI logoGoogle Scholar
Paiva, D. S., & Evans, R. (2005). Empirically-based control of natural language generation. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05) (pp. 58–65).Google Scholar
Pavalanathan, U., Fitzpatrick, J., Kiesling, S., & Eisenstein, J. (2017). A multi-dimensional lexicon for interpersonal stancetaking. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (pp. 884–895). Vancouver, CA: Association for Computation Linguistics.Google Scholar
Pearl, J. (2009). Causality. Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Peng, F., Schuurmans, D., & Wang, S. (2004). Augmenting naive bayes classifiers with statistical language models. Information Retrieval, 7(3–4), 317–345. DOI logoGoogle Scholar
Power, R., Scott, D., & Bouayad-Agha, N. (2003). Generating texts with style. In International Conference on Intelligent Text Processing and Computational Linguistics (pp. 444–452). Berlin: Springer. DOI logoGoogle Scholar
Prabhumoye, S., Tsvetkov, Y., Salakhutdinov, R., & Black, A. W. (2018). Style transfer through back-translation. In Proceedings of Association for Computational Linguistics Conference. Stroudsburg, PA: ACL. DOI logoGoogle Scholar
Quinlan, J. R. (2014). C4. 5: Programs for machine learning. Oxford: Elsevier.Google Scholar
Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the GINI index and information gain criteria. Annals of Mathematics and Artificial Intelligence, 41(1), 77–93. DOI logoGoogle Scholar
Rehbein, I., & Bildhauer, F. (2017). Data point selection for genre-aware parsing. In Proceedings of the 16th International Workshop on Treebanks and Linguistic Theories (pp. 95–105).Google Scholar
Reiter, E., & Dale, R. (2000). Building natural language generation systems. Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Reiter, E., Sripada, S., Hunter, J., & Yu, J. (2005). Choosing words in computer-generated weather forecasts. Artificial Intelligence, 167(1–2), 137–169. DOI logoGoogle Scholar
Reiter, E., & Williams, S. (2010). Generating texts in different styles. In S. Argamon, K. Burns, & S. Dubnov (Eds.), The structure of style. Algorithmic approachees to understanding manner and meaning (pp. 59–75). Heidelberg: Springer.Google Scholar
Santini, M. (2005). Genres in formation? An exploratory study of web pages using cluster analysis. In Proceedings of the 8th Annual Colloquium for the UK Special Interest Group for Computational Linguistics (CLUK05). Manchester, UK.Google Scholar
(2006). Some issues in automatic genre classification of web pages. In Proceedings of JADT 2006: 8èmes Journées Internationales d’Analyse statistique des Données Textuelles.Google Scholar
(2008). Zero, single, or multi? Genre of web pages through the users’ perspective. Information Processing & Management, 44(2), 702–737. DOI logoGoogle Scholar
Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys (CSUR), 34(1), 1–47. DOI logoGoogle Scholar
Sennrich, R., Haddow, B., & Birch, A. (2016). Controlling politeness in neural machine translation via side constraints. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 35–40).Google Scholar
Sharoff, S., Wu, Z., & Markert, K. (2010). The Web Library of Babel: Evaluating genre collections. In Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC’10).Google Scholar
Sheika, F. A., & Inkpen, D. (2012). Learning to classify documents according to formal and informal style. Linguistic Issues in Language Technology, 8(1), 1–29.Google Scholar
Speelman, D., Gondelaers, S., & Geeraerts, D. (2006). A profile-based calculation of region and register variation: The synchronic and diachronic status of the two main national varieties of Dutch. In A. Wilson, D. Archer, & P. Rayson (Eds.), Corpus Linguistics Around the World (pp. 181–194). Amsterdam: Rodopi. DOI logoGoogle Scholar
Stamatatos, E. (2008). Author identification: Using text sampling to handle the class imbalance problem. Information Processing & Management, 44(2), 790–799. DOI logoGoogle Scholar
Stamatatos, E., Fakotakis, N., & Kokkinakis, G. (2000). Automatic text categorization in terms of genre and author. Computational Linguistics, 26(4), 471–495. DOI logoGoogle Scholar
Svartvik, J., & Quirk, R. (1980). A corpus of English conversation. Lund: Gleerup.Google Scholar
Szmrecsanyi, B. (2009). Typological parameters of intralingual variability: Grammatical analyticity versus syntheticity in varieties of English. Language Variation and Change, 21(3), 319–353. DOI logoGoogle Scholar
Tambouratzis, G., Markantonatou, S., Hairetakis, N., Vassiliou, M., Tambouratzis, D., & Carayannis, G. (2000). Discriminating the registers and styles in the Modern Greek language. In Proceedings of the workshop on Comparing corpora (Vol. 91, pp. 35–42). Stroudsburg, PA: Association for Computational Linguistics.Google Scholar
Teich, E., & Fankhauser, P. (2010). Exploring a corpus of scientific texts using data mining. Language & Computers, 71(1), 233–247.Google Scholar
Teich, E., Degaetano-Ortlieb, S., Kermes, H., & Lapshinova-Koltunski, E. (2013). Scientific registers and disciplinary diversification: a comparable corpus approach. In Proceedings of the Sixth Workshop on Building and Using Comparable Corpora (pp. 59–68).Google Scholar
The British National Corpus, version 3 (BNC XML Edition). (2007). Distributed by Bodleian Libraries, University of Oxford, on behalf of the BNC Consortium. <[URL]>
Tweedie, S. Singh, & Holmes, D. I. (1996). Neural network applications in stylometry: The Federalist Papers. Computers and the Humanities, 30(1), 1–10. DOI logoGoogle Scholar
van Dijk, T. A. (1993). Stories and racism. In D. K. Mumby (Ed.). Narrative and social control: Critical perspectives. Newbury Park, CA: Sage. DOI logoGoogle Scholar
Vidulin, V., Luštrek, M., & Gams, M. (2007). Using genres to improve search engines. In Proceedings of the International Workshop Towards Genre-Enabled Search Engines (pp. 45–51).Google Scholar
Waseem, Z., & Hovy, D. (2016). Hateful symbols or hateful people? predictive features for hate speech detection on twitter. In Proceedings of Proceedings of NAACL-HLT 2016. (pp. 88–93). Stroudsburg, PA: The Association for Computational Linguistics <[URL]>
Waugh, S., Adams, A., & Tweedie, F. J. (2000). Computational stylistics using Artificial Neural Networks. Literary and Linguistic Computing, 15(2), 187–198. DOI logoGoogle Scholar
Xiao, R. (2009). Multi-dimensional analysis and the study of world Englishes. World Englishes, 28(4), 421–450. DOI logoGoogle Scholar
Xu, W., Ritter, A., Dolan, B., Grishman, R., & Cherry, C. (2012). Paraphrasing for style. In Proceedings of COLING 2012 (pp. 2899–2914).Google Scholar
Zhao, Y. & Zobel, J. (2005). Effective and scalable authorship attribution using function words. In Asia Information Retrieval Symposium (pp. 174–189). Heidelberg: Springer.Google Scholar
Zheng, R., Li, J., Chen, H., & Huang, Z. (2006). A framework for authorship identification of online messages: Writing-style features and classification techniques. Journal of the American Society for Information Science and Technology, 57(3), 378–393. DOI logoGoogle Scholar
Cited by (11)

Cited by 11 other publications

Repo, Liina, Brett Hashimoto & Veronika Laippala
2023. In search of founding era registers: automatic modeling of registers from the corpus of Founding Era American English. Digital Scholarship in the Humanities 38:4  pp. 1659 ff. DOI logo
Skantsi, Valtteri & Veronika Laippala
2023. Analyzing the unrestricted web: The finnish corpus of online registers. Nordic Journal of Linguistics  pp. 1 ff. DOI logo
Chaves, Ana Paula, Jesse Egbert, Toby Hocking, Eck Doerry & Marco Aurelio Gerosa
2022. Chatbots Language Design: The Influence of Language Variation on User Experience with Tourist Assistant Chatbots. ACM Transactions on Computer-Human Interaction 29:2  pp. 1 ff. DOI logo
Chaves, Ana Paula & Marco Aurelio Gerosa
2022. The Impact of Chatbot Linguistic Register on User Perceptions: A Replication Study. In Chatbot Research and Design [Lecture Notes in Computer Science, 13171],  pp. 143 ff. DOI logo
Marko, Karoline, Margit Reitbauer & Georg Pickl
2022. Same person, different platform. Register Studies 4:2  pp. 202 ff. DOI logo
Mendhakar, Akshay
2022. Linguistic Profiling of Text Genres: An Exploration of Fictional vs. Non-Fictional Texts. Information 13:8  pp. 357 ff. DOI logo
Degaetano-Ortlieb, Stefania, Tanja Säily & Yuri Bizzoni
2021. Registerial Adaptation vs. Innovation Across Situational Contexts: 18th Century Women in Transition. Frontiers in Artificial Intelligence 4 DOI logo
Laippala, Veronika, Jesse Egbert, Douglas Biber & Aki-Juhani Kyröläinen
2021. Exploring the role of lexis and grammar for the stable identification of register in an unrestricted corpus of web documents. Language Resources and Evaluation 55:3  pp. 757 ff. DOI logo
Pérez-Guerra, Javier
2021. Chapter 4. Theme as a proxy for register categorization. In Corpus-based Approaches to Register Variation [Studies in Corpus Linguistics, 103],  pp. 85 ff. DOI logo
Bizzoni, Yuri, Stefania Degaetano-Ortlieb, Peter Fankhauser & Elke Teich
2020. Linguistic Variation and Change in 250 Years of English Scientific Writing: A Data-Driven Approach. Frontiers in Artificial Intelligence 3 DOI logo
[no author supplied]

This list is based on CrossRef data as of 29 october 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.