Part of
Complexity, Accuracy and Fluency in Learner Corpus Research
Edited by Agnieszka Leńko-Szymańska and Sandra Götz
[Studies in Corpus Linguistics 104] 2022
► pp. 2150
References (67)
References
Arnold, Taylor, Ballier, Nicolas, Gaillat, Thomas & Lissòn, Paula. 2018. Predicting CEFR levels in learner English on the basis of metrics and full texts. ArXiv: 1806.11099: 75–82. <[URL]> (15 December 2021).
Baayen, Harald R. 2008. Analyzing Linguistic Data: A Practical Introduction to Statistics Using R. Cambridge: CUP. DOI logoGoogle Scholar
Ballier, Nicolas, Canu, Stéphane, Petitjean, Caroline, Gasso, Gilles, Balhana, Carlos, Alexopoulou, Theodora & Gaillat, Thomas. 2020. Machine learning for learner English. International Journal of Learner Corpus Research 6(1): 72–103. DOI logoGoogle Scholar
Ballier, Nicolas & Gaillat, Thomas. 2016. Classifying French learners of English with written-based lexical and complexity metrics. In Actes de la conférence conjointe JEP-TALN-RECITAL 2016 volume 09: ELTAL, Ivan Šmilauer & Jovan Kostov (eds). 1–14. Paris: Association Francophone pour la Communication Parlée (AFCP) and Association pour le Traitement Automatique des Langues (ATALA). <[URL]> (16 December 2021).
Ballier, Nicolas, Gaillat, Thomas, Simpkin, Andrew, Stearns, Bernardo, Bouyé, Manon & Zarrouk, Manel. 2019. A supervised learning model for the automatic assessment of language levels based on learner errors. In Transforming Learning with Meaningful Technologies [Lecture Notes in Computer Science], Maren Scheffel, Julien Broisin, Viktoria Pammer-Schindler, Andri Ioannou & Jan Schneider (eds), 308–320. Cham: Springer. DOI logoGoogle Scholar
Benoit, Kenneth, Watanabe, Kohei, Wang, Haiyan, Nulty, Paul, Obeng, Adam, Müller, Stefan & Matsuo, Akitaka. 2018. Quanteda: An R package for the quantitative analysis of textual data. Journal of Open Source Software 3(30): 774. DOI logoGoogle Scholar
Biber, Douglas, Gray, Bethany, Staples, Shelley & Egbert, Jesse. 2020. Investigating grammatical complexity in L2 English writing research: Linguistic description versus predictive measurement. Journal of English for Academic Purposes 46: 100869. DOI logoGoogle Scholar
Bulté, Bram & Housen, Alex. 2012. Defining and operationalising L2 complexity. In Dimensions of L2 Performance and Proficiency: Complexity, Accuracy and Fluency in SLA [Language Learning & Language Teaching 32], Alex Housen, Folkert Kuiken & Ineke Vedder (eds), 21–46. Amsterdam: John Benjamins. DOI logoGoogle Scholar
Bulté, Bram & Roothooft, Hanne. 2020. Investigating the interrelationship between rated L2 proficiency and linguistic complexity in L2 speech. System 91: 102246. DOI logoGoogle Scholar
Callies, Marcus. 2015. Learner corpus methodology. In The Cambridge Handbook of Learner Corpus Research, Sylviane Granger, Gaëtanelle Gilquin & Fanny Meunier (eds), 35–56. Cambridge: CUP. DOI logoGoogle Scholar
Chall, Jeanne S. & Dale, Edgar. 1995. Readability Revisited: The New Dale-Chall Readability Formula. Cambridge MA: Brookline Books.Google Scholar
Chavent, Marie, Kuentz, Simonet V., Liquet, Benoit & Saracco, Jérôme. 2012. ClustOfVar: An R package for the clustering of variables. Journal of Statistical Software 50(13): 1–16. DOI logoGoogle Scholar
Chen, Miao & Zechner, Klaus. 2011. Computing and evaluating syntactic complexity features for automated scoring of spontaneous non-native speech. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Dekang Lin, Yuji Matsumoto & Rada Mihalcea (eds), 722–731. Stroudsburg PA: Association for Computational Linguistics. <[URL]> (15 December 2021).
Council of Europe. 2001. Common European Framework of Reference for Languages: Learning, Teaching, Assessment. Cambridge: CUP.Google Scholar
. 2018. Common European Framework of Reference for Languages: Learning, Teaching, Assessment: Companion Volume with New Descriptors. Strasbourg: Council of Europe.Google Scholar
Crossley, Scott A., Kyle, Kristopher, Allen, Laura K., Guo, Liang & McNamara, Danielle S. 2014. Linguistic microfeatures to predict L2 writing proficiency: A case study in automated writing evaluation. The Journal of Writing Assessment 7(1). <[URL]> (15 December 2021).
Crossley, Scott A., Kyle, Kristopher & McNamara, Danielle S. 2016. The tool for the automatic analysis of text cohesion (TAACO): Automatic assessment of local, global, and text cohesion. Behavior Research Methods 48(4): 1227–1237. DOI logoGoogle Scholar
Crossley, Scott A., Salsbury, Tom, McNamara, Danielle S. & Jarvis, Scott. 2011. Predicting lexical proficiency in language learner texts using computational indices. Language Testing 28(4): 561–580. DOI logoGoogle Scholar
Dale, Robert, Anisimoff, Ilya & Narroway, George. 2012. HOO 2012: A report on the preposition and determiner error correction shared task. In Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, Joel Tetreault, Jill Burstein & Claudia Leacock (eds), 54–62. Stroudsburg PA: Association for Computational Linguistics. <[URL]> (15 December 2021).
Davies, Mark. 2009. The 385+ million word Corpus of Contemporary American English (1990–2008+): Design, architecture, and linguistic insights. International Journal of Corpus Linguistics 14(2): 159–190. DOI logoGoogle Scholar
Eguchi, Masaki & Kyle, Kristopher. 2020. Continuing to explore the multidimensional nature of lexical sophistication: The case of oral proficiency interviews. The Modern Language Journal 104(2): 381–400. DOI logoGoogle Scholar
Fellbaum, Christiane (ed.). 1998. WordNet: An Electronic Lexical Database [Language, Speech, and Communication]. Cambridge MA: The MIT Press. DOI logoGoogle Scholar
François, Thomas & Watrin, Patrick. 2011. On the contribution of MWE-based features to a readability formula for French as a foreign language. In Proceedings of the International Conference Recent Advances in Natural Language Processing 2011, Ruslan Mitkov & Galia Angelova (eds), 441–447. Hissar: Association for Computational Linguistics. <[URL]> (16 December 2021).
Gaillat, Thomas, Janvier, Pascale, Dumont, Bénédicte, Lafontaine, Antoine & Kerfati, Anas. 2019. CELVA.Sp: A corpus for the visualisation of linguistic profiles in language learners. PERL 2019 Université de Paris Diderot, Dec 2019, Paris, France. <[URL]> (15 December 2021).
Gaillat, Thomas, Simpkin, Andrew, Ballier, Nicolas, Stearns, Bernardo, Sousa, Annanda, Bouyé, Manon, & Zarrouk, Manel. 2021. Predicting CEFR levels in learners of English: The use of microsystem criterial features in a machine learning approach. ReCALL. DOI logoGoogle Scholar
Gilquin, Gaëtanelle. 2015. From design to collection of learner corpora. In The Cambridge Handbook of Learner Corpus Research [Cambridge Handbooks in Language and Linguistics], Sylviane Granger, Gaëtanelle Gilquin & Fanny Meunier (eds), 9–34. Cambridge: CUP. DOI logoGoogle Scholar
Hawkins, John A. & Filipović, Luna. 2012. Criterial Features in L2 English: Specifying the Reference Levels of the Common European Framework [English Profile Studies 1]. Cambridge: CUP.Google Scholar
Khushik, Ghulam A. & Huhta, Ari. 2020. Investigating syntactic complexity in EFL learners’ writing across Common European Framework of Reference Levels A1, A2, and B1. Applied Linguistics 41(4): 506–532. DOI logoGoogle Scholar
Kim, Minkyung & Crossley, Scott A. 2018. Modeling second language writing quality: A structural equation investigation of lexical, syntactic, and cohesive features in source-based and independent writing. Assessing Writing 37: 39–56. DOI logoGoogle Scholar
Koizumi, Rie & In’nami, Yo. 2012. Effects of text length on lexical diversity measures: Using short texts with less than 200 tokens. System 40(4): 522–532. DOI logoGoogle Scholar
Kyle, Kristopher. 2016. Measuring Syntactic Development in L2 Writing: Fine-grained Indices of Syntactic Complexity and Usage-Based Indices of Syntactic Sophistication. PhD dissertation, Georgia State University.
Kyle, Kristopher & Crossley, Scott A. 2015. Automatically assessing lexical sophistication: Indices, tools, findings, and application. TESOL Quarterly, 49(4): 757–86. DOI logoGoogle Scholar
Kyle, Kristopher, Crossley, Scott & Berger, Cynthia. 2018. The tool for the automatic analysis of lexical sophistication (TAALES), Version 2.0. Behavior Research Methods 50(3): 1030–1046. DOI logoGoogle Scholar
Kyle, Kristopher, Crossley, Scott A. & Jarvis, Scott. 2021. Assessing the validity of lexical diversity indices using direct judgements. Language Assessment Quarterly 18(2): 154–170. DOI logoGoogle Scholar
Lahmann, Cornelia, Steinkrauss, Rasmus & Schmid, Monika S. 2019. Measuring linguistic complexity in long-term L2 speakers of English and L1 attriters of German. International Journal of Applied Linguistics 29(2): 173–191. DOI logoGoogle Scholar
Leacock, Claudia, Chodorow, Martin & Tetreault, Joel. 2015. Automatic grammar- and spell-checking for language learners. In The Cambridge Handbook of Learner Corpus Research [Cambridge Handbooks in Language and Linguistics], Sylviane Granger, Gaëtanelle Gilquin & Fanny Meunier (eds), 567–586. Cambridge: CUP. DOI logoGoogle Scholar
Leńko-Szymańska, Agnieszka. 2019. Defining and Assessing Lexical Proficiency. New York NY: Routledge. DOI logoGoogle Scholar
Levy, Roger & Andrew, Galen. 2006. Tregex and Tsurgeon: Tools for querying and manipulating tree data structures. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006), Nicoletta Calzolari, Khalid Choukri, Aldo Gangemi, Bente Maegaard, Joseph Mariani, Jan Odijk, Daniel Tapias (eds), 2231–2234. Genoa: European Language Resources Association (ELRA). <[URL]> (15 December 2021).
Liaw, Andy & Wiener, Matthew. 2002. Classification and regression by randomForest. R News 2(3): 18–22.Google Scholar
Lissón, Paula. 2017. Investigating the use of readability metrics to detect differences in written productions of learners: A corpus-based study. Bellaterra Journal of Teaching and Learning Language and Literature 10(4): 68–86. DOI logoGoogle Scholar
Lu, Xiaofei. 2010. Automatic analysis of syntactic complexity in second language writing. International Journal of Corpus Linguistics 15(4): 474–496. DOI logoGoogle Scholar
. 2012. The relationship of lexical richness to the quality of ESL learners’ oral narratives. The Modern Language Journal 96(2): 190–208. DOI logoGoogle Scholar
. 2014. Computational Methods for Corpus Annotation and Analysis. Dordrecht: Springer. DOI logoGoogle Scholar
Manning, Christopher D., Surdeanu, Mihai, Bauer, John, Finkel, Jenny, Bethard, Steven J. & McClosky, David. 2014. The Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Kalina Bontcheva & Jingbo Zhu (eds), 55–60. Baltimore MD: Association for Computational Linguistics. <[URL]> (15 December 2021). DOI logo
McCarthy, Philip M. & Jarvis, Scott. 2010. MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches to lexical diversity assessment. Behavior Research Methods 42(2): 381–392. DOI logoGoogle Scholar
Ng, Hwee Tou, Wu, Siew Mei, Briscoe, Ted, Hadiwinoto, Christian, Susanto, Raymond Hendy & Bryant, Christopher. 2014. The CoNLL-2014 shared task on grammatical error correction. In Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task, Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy Susanto & Christopher Bryant (eds), 1–14. Baltimore MD: Association for Computational Linguistics. <[URL]> (15 December 2021). DOI logo
Norris, John M. & Ortega, Lourdes. 2009. Towards an organic approach to investigating CAF in instructed SLA: The Case of complexity. Applied Linguistics 30(4): 555–578. DOI logoGoogle Scholar
Norris, John & Ortega, Lourdes. 2008. Defining and measuring SLA. In The Handbook of Second Language Acquisition, Catherine Doughty & Michael H. Long (eds), 716–761. Oxford: John Wiley & Sons. DOI logoGoogle Scholar
O’Keeffe, Anne & Mark, Geraldine. 2017. The English Grammar Profile of learner competence: Methodology and key findings. International Journal of Corpus Linguistics 22(4): 457–489. DOI logoGoogle Scholar
Pilán, Ildikó & Volodina, Elena. 2018. Investigating the importance of linguistic complexity features across different datasets related to language learning. In Proceedings of the Workshop on Linguistic Complexity and Natural Language Processing, Leonor Becerra-Bonache, M. Dolores Jiménez-López, Carlos Martín-Vide, Adrià Torrens-Urrutia (eds), 49–58. Santa Fe NM: Association for Computational Linguistics. <[URL]> (15 December 2021).
R Core Team. 2012. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Read, John. 2000. Assessing Vocabulary. Cambridge: CUP. DOI logoGoogle Scholar
Rudzewitz, Björn, Ziai, Ramon, Nuxoll, Florian, Kuthy, Kordula De & Meurers, Walt Detmar. 2019. Enhancing a web-based language tutoring system with learning analytics. In Joint Proceedings of the Workshops of the 12th International Conference on Educational Data Mining co-located with the 12th International Conference on Educational Data Mining, EDM 2019 Workshops, Luc Paquette, Cristóbal Romero (eds). Montréal: CEUR-WS. <[URL]> (15 December 2021).
Shute, Valerie J. 2008. Focus on formative feedback. Review of Educational Research 78(1): 153–189. DOI logoGoogle Scholar
Smith, Edgar A., & Senter, Roderick J. 1967. Automated Readability Index. AMRL-TR-66-22. Wright-Paterson Air Force Base OH: Aerospace Medical Division.Google Scholar
Swartz, Merryanna L. & Yazdani, Masoud. 2012. Intelligent Tutoring Systems for Foreign Language Learning: The Bridge to International Communication. Berlin: Springer.Google Scholar
Tanaka-Ishii, Kumiko & Aihara, Shunsuke. 2015. Computational constancy measures of texts – Yule’s K and Rényi’s entropy. Computational Linguistics 41(3): 481–502. DOI logoGoogle Scholar
Tetreault, Joel, Burstein, Jill, Kochmar, Ekaterina, Leacock, Claudia & Yannakoudakis, Helen (eds). 2018. Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications. New Orleans LA: Association for Computational Linguistics. DOI logoGoogle Scholar
Treffers-Daller, Jeanine, Parslow, Patrick & Williams, Shirley. 2016. Back to basics: How measures of lexical diversity can help discriminate between CEFR Levels. Applied Linguistics 39(3): 302–327. DOI logoGoogle Scholar
Vajjala, Sowmya & Loo, Kaidi. 2014. Automatic CEFR level prediction for Estonian learner text. In Proceedings of the Third Workshop on NLP for Computer Assisted Language Learning, Elena Volodina, Lars Borin, Ildikó Pilán (eds), 113–127. Uppsala: LiU Electronic Press. <[URL]> (15 December 2021).
Venant, Rémi & D’Aquin, Mathieu. 2019. Towards the prediction of semantic complexity based on concept graphs. In 12th International Conference on Educational Data Mining (EDM 2019), Collin F. Lynch, Agathe Merceron, Michel Desmarais & Roger Nkambou (eds), 188–197. Montreal: International Educational Data Mining Society (IEDMS). <[URL]> (15 December 2021).
Venant, Rémi, Sharma, Kshitij, Dillenbourg, Pierre, Vidal, Philippe & Broisin, Julien. 2017. A study of learners’ behaviors in hands-on learning situations and their correlation with academic performance. In Artificial Intelligence in Education [Lecture Notes in Computer Science 10331], Elisabeth André, Ryan Baker, Xiangen Hu, Ma, Mercedes T. Rodrigo & Benedict du Boulay (eds), 570–573. Cham: Springer. DOI logoGoogle Scholar
Volodina, Elena, Pilán, Ildikó & Alfter, David. 2016. Classification of Swedish learner essays by CEFR levels. In CALL Communities and Culture – Short Papers from EUROCALL 2016, Salomi Papadima-Sophocleous, Linda Bradley & Sylvie Thouësny (eds), 456–461. Dublin: Research-publishing.net. DOI logoGoogle Scholar
Wolfe-Quintero, Kate, Inagaki, Shunji & Kim, Hae-Young. 1998. Second Language Development in Writing: Measures of Fluency, Accuracy, & Complexity. Honolulu HI: Second Language Teaching & Curriculum Center, University of Hawai’i at Manoa.Google Scholar
Yannakoudakis, Helen, Andersen, Øistein E., Geranpayeh, Ardeshir, Briscoe, Ted & Nicholls, Diane. 2018. Developing an automated writing placement system for ESL learners. Applied Measurement in Education 31(3): 251–267. DOI logoGoogle Scholar
Yannakoudakis, Helen, Briscoe, Ted & Medlock, Ben. 2011. A new dataset and method for automatically grading ESOL texts. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Dekang Lin, Yuji Matsumoto, Rada Mihalcea (eds), 180–189. Stroudsburg PA: Association for Computational Linguistics. <[URL]> (15 December 2021).
Yule, G. Udny. 1944. The Statistical Study of Literary Vocabulary. Cambridge: CUP.Google Scholar