• Forthcoming titles
      • New in paperback
      • New titles by subject
      • June 2023
      • May 2023
      • April 2023
      • March 2023
      • New serials
      • Latest issues
      • Currently in production
      • Active series
      • Other series
      • Open-access books
      • Text books & Course books
      • Dictionaries & Reference
      • By JB editor
      • Active serials
      • Other
      • By JB editor
      • Printed catalogs
      • E-book collections
      • Amsterdam (Main office)
      • Philadelphia (North American office)
      • General
      • US, Canada & Mexico
      • E-books
      • Examination & Desk Copies
      • General information
      • Access to the electronic edition
      • Special offers
      • Terms of Use
      • E-newsletter
      • Book Gazette
Cover not available
Part of
No Matter, Never Mind: Proceedings of Toward a Science of Consciousness: Fundamental approaches, Tokyo 1999
Edited by Kunio Yasue, Mari Jibu and Tarcisio Della Senta
[Advances in Consciousness Research 33] 2002
► pp. 217–230

Accumulation of rapid and small synaptic increase as a basis for implicit memory

Osamu Hoshino | Oita University, Japan
Satoru Inoue | The University of Electro-Communications, Chofu, Japan
Yoshiki Kashimori | The University of Electro-Communications, Chofu, Japan
Takeshi Kambara | The University of Electro-Communications, Chofu, Japan

To understand the neural basis of implicit memory, a cortical neural network was modeled and simulated. As a cognitive process that relies on implicit memory, we employed “priming”, in which the identification of a stimulus is facilitated as a consequence of prior exposure to it. The network was trained to learn a visual scene that contains multiple objects each of which is composed of features with different sensory modalities. After the training, limit-cycle attractors corresponding to the learned objects are formed in the dynamic system of the network. Each limit-cycle attractor contains point attractors corresponding to the features of an individual object. In the priming test, the network is first stimulated (primed) with a cue feature that belongs to one of the objects. After the stimulation, we let the network identify one of its associate feature stimuli that belong to the same object. The identification of the associate stimulus is greatly enhanced if the cue stimulus is presented before the identification process, thus the network is primed. We demonstrate that the neural basis of implicit memory arises from the stabilization of relevant attractors, which is established by the rapid and small increase in the strength of synaptic connections during priming period. Repetitive trials of priming are stored as experience, in which synaptic accumulation is essential for the storage of the experience.

Published online: 22 March 2002
DOI logo
https://doi.org/10.1075/aicr.33.21hos
Share via FacebookShare via TwitterShare via LinkedInShare via WhatsApp
About us | Disclaimer | Privacy policy | | | | Antiquariathttps://benjamins.com