References (164)
Alkire, M.T., Haier, R.J., & Fallon, J.H. (2000). Toward a unified theory of narcosis: Brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Consciousness and Cognition, 9(3), 370–386. DOI logoGoogle Scholar
Alkire, M.T., Hudetz, A.G., & Tononi, G. (2008). Consciousness and anesthesia. Science, 322(5903), 876–880. DOI logoGoogle Scholar
Alkire, M.T., Pomfrett, C.J., Haier, R.J., Gianzero, M.V., Chan, C.M., Jacobsen, B.P., & Fallon, J.H. (1999). Functional brain imaging during anesthesia in humans: Effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology, 90(3), 701–709. DOI logoGoogle Scholar
Andrews, K. (2004). Medical decision making in the vegetative state: Withdrawal of nutrition and hydration. Neurorehabilitation, 19(4), 299–304.Google Scholar
Baars, B.J. (2002). The conscious access hypothesis: Origins and recent evidence. Trends in Cognitive Sciences, 6(1), 47–52. DOI logoGoogle Scholar
. (2005). Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. Progress in Brain Research, 150, 45–53. DOI logoGoogle Scholar
Baars, B.J., Ramsoy, T.Z., & Laureys, S. (2003). Brain, conscious experience and the observing self. Trends in Neurosciences, 26(12), 671–675. DOI logoGoogle Scholar
Bassetti, C., Vella, S., Donati, F., Wielepp, P., & Weder, B. (2000). SPECT during sleepwalking. Lancet, 356(9228), 484–485. DOI logoGoogle Scholar
Bauer, G., Gerstenbrand, F., & Rumpl, E. (1979). Varieties of the locked-in syndrome. Journal of Neurology, 221(2), 77–91. DOI logoGoogle Scholar
Bekinschtein, T., Leiguarda, R., Armony, J., Owen, A., Carpintiero, S., Niklison, J., Sigman, L., Olmos, L., & Manes, F. (2004). Emotion processing in the minimally conscious state. Journal of Neurology, Neurosurgery and Psychiatry, 75(5), 788. DOI logoGoogle Scholar
Bernat, J.L. (2002). Questions remaining about the minimally conscious state. Neurology, 58(3), 337–338. DOI logoGoogle Scholar
Biswal, B., Yetkin, F.Z., Haughton, V.M., & Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541. DOI logoGoogle Scholar
Boly, M., Coleman, M.R., Davis, M.H., Hampshire, A., Bor, D., Moonen, G., Maquet, P.A., Pickard, J.D., Laureys, S., & Owen, A.M. (2007). When thoughts become action: An fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage, 36(3), 979–992. DOI logoGoogle Scholar
Boly, M., Faymonville, M.-E., Peigneux, P., Lambermont, B., Damas, P., Del Fiore, G., Degueldre, C., Franck, G., Luxen, A., Lamy, M., Moonen, G., Maquet, P., & Laureys, S. (2004). Auditory processing in severely brain injured patients: Differences between the minimally conscious state and the persistent vegetative state. Archives of Neurology, 61(2), 233–238. DOI logoGoogle Scholar
Boly, M., Faymonville, M.-E., Schnakers, C., Peigneux, P., Lambermont, B., Phillips, C., Lancellotti, P., Luxen, A., Lamy, M., Moonen, G., Maquet, P., & Laureys, S. (2008). Perception of pain in the minimally conscious state with PET activation: An observational study. Lancet Neurology, 7(11), 1013–1020. DOI logoGoogle Scholar
Boly, M., Moran, R., Murphy, M., Boveroux, P., Bruno, M.-A., Noirhomme, Q., Ledoux, D., Bonhomme, V., Brichant, J.F., Tononi, G., Laureys, S., & Friston, K. (2012). Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. Journal of Neuroscience, 32(20), 7082–7090. DOI logoGoogle Scholar
Boly, M., Phillips, C., Balteau, E., Schnakers, C., Degueldre, C., Moonen, G., Luxen, A., Peigneux, P., Faymonville, M.E., Maquet, P., & Laureys, S. (2008). Consciousness and cerebral baseline activity fluctuations. Human Brain Mapping, 29(7), 868–874. DOI logoGoogle Scholar
Boly, M., Sanders, R.D., Mashour, G.A., & Laureys, S. (2013). Consciousness and responsiveness: Lessons from anaesthesia and the vegetative state. Current Opinion in Anesthesiology, 26(4), 444–449. DOI logoGoogle Scholar
Boly, M., Tshibanda, L., Vanhaudenhuyse, A., Noirhomme, Q., Schnakers, C., Ledoux, D., Boveroux, P., Garweg, C., Lambermont, B., Phillips, C., Luxen, A., Moonen, G., Bassetti, C., Maquet, P., & Laureys, S. (2009). Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Human Brain Mapping, 30(8), 2393–2400. DOI logoGoogle Scholar
Bonhomme, V., Fiset, P., Meuret, P., Backman, S., Plourde, G., Paus, T., Bushnell, M.C., & Evans, A.C. (2001). Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: A positron emission tomography study. Journal of Neurophysiology, 85(3), 1299–1308.Google Scholar
Born, J.D. (1988). The Glasgow-Liege Scale. Prognostic value and evolution of motor response and brain stem reflexes after severe head injury. Acta Neurochirurgica, 91(1–2), 1–11. DOI logoGoogle Scholar
Boveroux, P., Bonhomme, V., Boly, M., Vanhaudenhuyse, A., Maquet, P., & Laureys, S. (2008). Brain function in physiologically, pharmacologically, and pathologically altered states of consciousness. International Anesthesiology Clinics, 46(3), 131–146. DOI logoGoogle Scholar
Boveroux, P., Vanhaudenhuyse, A., Bruno, M.-A., Noirhomme, Q., Lauwick, S., Luxen, A., Degueldre, C., Plenevaux, A., Schnakers, C., Phillips, C., Brichant, J.F., Bonhomme, V., Maquet, P., Greicius, M.D., Laureys, S., & Boly, M. (2010). Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology, 113(5), 1038–1053. DOI logoGoogle Scholar
Bruno, M., Bernheim, J.L., Schnakers, C., & Laureys, S. (2008). Locked-in: Don’t judge a book by its cover. Journal of Neurology, Neurosurgery and Psychiatry, 79(1), 2. DOI logoGoogle Scholar
Bruno, M.-A., Gosseries, O., Ledoux, D., Hustinx, R., & Laureys, S. (2011). Assessment of consciousness with electrophysiological and neurological imaging techniques. Current Opinion in Critical Care, 17(2), 146–151. DOI logoGoogle Scholar
Bruno, M.-A., Gosseries, O., Vanhaudenhuyse, A., Chatelle, C., & Laureys, S. (2010). Etat végétatif et état de conscience minimale: Un devenir pire que la mort. In L. Puybasset (Ed.), Enjeux éthiques en réanimation (pp.119–127). Paris: Springer. DOI logoGoogle Scholar
Bruno, M.-A., Ledoux, D., Lambermont, B., Damas, F., Schnakers, C., Vanhaudenhuyse, A., Gosseries, O., & Laureys, S. (2011). Comparison of the Full Outline of UnResponsiveness and Glasgow Liege Scale/Glasgow Coma Scale in an intensive care unit population. Neurocritical Care, 15(3), 447–453. DOI logoGoogle Scholar
Bruno, M.-A., Ledoux, D., Vanhaudenhuyse, A., Gosseries, O., Thibaut, A., & Laureys, S. (2012). Prognosis of patients with altered state of consciousness. In C. Schnakers & S. Laureys (Eds.), Coma and disorders of consciousness (pp.11–23). Paris: Springer-Verlag. DOI logoGoogle Scholar
Bruno, M.-A., Majerus, S., Boly, M., Vanhaudenhuyse, A., Schnakers, C., Gosseries, O., Boveroux, P., Kirsch, M., Demertzi, A., Bernard, C., Hustinx, R., Moonen, G., & Laureys, S. (2012). Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. Journal of Neurology, 259(6), 1087–1098. DOI logoGoogle Scholar
Bruno, M.-A., Schnakers, C., Damas, F., Pellas, F., Lutte, I., Bernheim, J., Majerus, S., Moonen, G., Goldman, S., & Laureys, S. (2009). Locked-in syndrome in children: Report of five cases and review of the literature. Pediatric Neurology, 41(4), 237–246. DOI logoGoogle Scholar
Bruno, M.-A., Vanhaudenhuyse, A., Thibaut, A., Moonen, G., & Laureys, S. (2011). From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: Recent advances in our understanding of disorders of consciousness. Journal of Neurology, 258(7), 1373–1384. DOI logoGoogle Scholar
Cairns, H., Oldfield, R.C., Pennybacker, J.B., & Whitteridge, D. (1941). Akinetic mutism with an epidermoid cyst of the third ventricle. Brain, 64(4), 273–290. DOI logoGoogle Scholar
Campagna, J.A., Miller, K.W., & Forman, S.A. (2003). Mechanisms of actions of inhaled anesthetics. New England Journal of Medicine, 348(21), 2110–2124. DOI logoGoogle Scholar
Casali, A.G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K.R., Casarotto, S., Bruno, M.A., Laureys, S., Tononi, G., & Massimini, M. (2013). A theoretically based index of consciousness independent of sensory processing and behavior. Science Translational Medicine, 5(198), 198ra105. DOI logoGoogle Scholar
Chatelle, C., Thibaut, A., Bruno, M.-A., Boly, M., Bernard, C., Hustinx, R., Schnakers, C., & Laureys, S. (2014). Nociception coma scale-revised scores correlate with metabolism in the anterior cingulate cortex. Neurorehabilitation and Neural Repair, 28(2), 149–152. DOI logoGoogle Scholar
Clement, E.A., Richard, A., Thwaites, M., Ailon, J., Peters, S., & Dickson, C.T. (2008). Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia. PLoS One, 3(4), e2004. DOI logoGoogle Scholar
Cole, M.W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage, 37(1), 343–360. DOI logoGoogle Scholar
Coleman, M.R., Rodd, J.M., Davis, M.H., Johnsrude, I.S., Menon, D.K., Pickard, J.D., & Owen, A.M. (2007). Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain, 130(10), 2494–2507. DOI logoGoogle Scholar
Cruse, D., Chennu, S., Chatelle, C., Bekinschtein, T.A., Fernandez-Espejo, D., Pickard, J.D., Laureys, S., & Owen, A.M. (2011). Bedside detection of awareness in the vegetative state: A cohort study. Lancet, 378(9809), 2088–2094. DOI logoGoogle Scholar
Damasio, A., & Meyer, K. (2009). Consciousness: An overview of the phenomenon and of its possible neural basis. In S. Laureys & G. Tononi (Eds.), The neurology of consciousness: Cogntive neuroscience and neuropathology (pp. 3–14). Oxford, UK: Elsevier Ltd. DOI logoGoogle Scholar
Davis, M.H., Coleman, M.R., Absalom, A.R., Rodd, J.M., Johnsrude, I.S., Matta, B.F., Owen, A.M., & Menon, D.K. (2007). Dissociating speech perception and comprehension at reduced levels of awareness. Proceedings of the National Academy of Sciences USA, 104(41), 16032–16037. DOI logoGoogle Scholar
Dehaene, S., & Changeux, J.-P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70(2), 200–227. DOI logoGoogle Scholar
Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: A testable taxonomy. Trends in Cognitive Sciences, 10(5), 204–211. DOI logoGoogle Scholar
Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1–2), 1–37. DOI logoGoogle Scholar
Del Cul, A., Baillet, S., & Dehaene, S. (2007). Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biology, 5(10), e260. DOI logoGoogle Scholar
Demertzi, A., Gosseries, O., Bruno, M.-A., Schnakers, C., Vanhaudenhuyse, A., Chatelle, C., Charland-Verville, V., Thibaut, A., Thonnard, M., & Laureys, S. (2012). The ethics of managing disorders of consciousness. In C. Schnakers & S. Laureys (Eds.), Coma and disorders of consciousness (pp. 147–154). Paris: Springer-Verlag. DOI logoGoogle Scholar
Di, H.B., Yu, S.M., Weng, X.C., Laureys, S., Yu, D., Li, J.Q., Qin, P.M., Zhu, Y.H., Zhang, S.Z., & Chen, Y.Z. (2007). Cerebral response to patient’s own name in the vegetative and minimally conscious states. Neurology, 68(12), 895–899. DOI logoGoogle Scholar
Edelman, G.M., & Tononi, G. (2000). A universe of consciousness: How matter becomes imagination. New York, NY: Basic Books.Google Scholar
Eikermann, M., Fassbender, P., Zaremba, S., Jordan, A.S., Rosow, C., Malhotra, A., & Chamberlin, N.L. (2009). Pentobarbital dose-dependently increases respiratory genioglossus muscle activity while impairing diaphragmatic function in anesthetized rats. Anesthesiology, 110(6), 1327–1334. DOI logoGoogle Scholar
Ferrarelli, F., Massimini, M., Sarasso, S., Casali, A., Riedner, B.A., Angelini, G., Tononi, G., & Pearce, R.A. (2010). Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proceedings of the National Academy of Sciences USA, 107(6), 2681–2686. DOI logoGoogle Scholar
Fins, J.J. (2009). The ethics of measuring and modulating consciousness: The imperative of minding time. Progress in Brain Research, 177, 371–382. DOI logoGoogle Scholar
Fins, J.J., & Schiff, N.D. (2010). In the blink of the mind’s eye. Hastings Center Report, 40(3), 21–23. DOI logoGoogle Scholar
Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P., Bonhomme, V., Hajj-Ali, N., Backman, S.B., & Evans, A.C. (1999). Brain mechanisms of propofol-induced loss of consciousness in humans: A positron emission tomographic study. Journal of Neuroscience, 19(13), 5506–5513.Google Scholar
Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., & Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences USA, 102(27), 9673–9678. DOI logoGoogle Scholar
Giacino, J.T. (1997). Disorders of consciousness: Differential diagnosis and neuropathologic features. Seminars in Neurology, 17(2), 105–111. DOI logoGoogle Scholar
Giacino, J.T., Ashwal, S., Childs, N., Cranford, R., Jennett, B., Katz, D.I., Kelly, J.P., Rosenberg, J.H., Whyte, J., Zafonte, R.D., & Zasler, N.D. (2002). The minimally conscious state: Definition and diagnostic criteria. Neurology, 58(3), 349–353. DOI logoGoogle Scholar
Giacino, J.T., Hirsch, J., Schiff, N., & Laureys, S. (2006). Functional neuroimaging applications for assessment and rehabilitation planning in patients with disorders of consciousness. Archives of Physical Medicine and Rehabilitation, 87(12 Suppl. 2), S67–S76. DOI logoGoogle Scholar
Giacino, J.T., Schnakers, C., Rodriguez-Moreno, D., Kalmar, K., Schiff, N., & Hirsch, J. (2009). Behavioral assessment in patients with disorders of consciousness: Gold standard or fool’s gold? Progress in Brain Research, 177, 33–48. DOI logoGoogle Scholar
Goodman, S.J., & Mann, P.E. (1967). Reticular and thalamic multiple unit activity during wakefulness, sleep and anesthesia. Experimental Neurology, 19(1), 11–24. DOI logoGoogle Scholar
Gosseries, O., Bruno, M.-A., Chatelle, C., Vanhaudenhuyse, A., Schnakers, C., Soddu, A., & Laureys, S. (2011). Disorders of consciousness: What’s in a name? Neurorehabilitation, 28(1), 3–14.Google Scholar
Gosseries, O., Bruno, M.-A., Vanhaudenhuyse, A., Laureys, S., & Schnakers, C. (2009). Consciousness in the locked-in syndrome. In S. Laureys & G. Tononi (Eds.), The neurology of consciousness: Cognitive neuroscience and neuropathology (pp.191–203). Oxford, UK: Elsevier Ltd. DOI logoGoogle Scholar
Gosseries, O., Schnakers, C., Ledoux, D., Vanhaudenhuyse, A., Bruno, M.-A., Demertzi, A., Noirhomme, Q., Lehembre, R., Damas, P., Goldman, S., Peeters, E., Moonen, G., & Laureys, S. (2011). Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Functional Neurology, 26(1), 25–30.Google Scholar
Gosseries, O., Zasler, N.D., & Laureys, S. (2014). Recent advances in disorders of consciousness: Focus on the diagnosis. Brain Injury, 28(9), 1141–1150. DOI logoGoogle Scholar
Greicius, M.D., Kiviniemi, V., Tervonen, O., Vainionpää, V., Alahuhta, S., Reiss, A.L., & Menon, V. (2008). Persistent default-mode network connectivity during light sedation. Human Brain Mapping, 29(7), 839–847. DOI logoGoogle Scholar
Gugino, L.D., Chabot, R.J., Prichep, L.S., John, E.R., Formanek, V., & Aglio, L.S. (2001). Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. British Journal of Anaesthesia, 87(3), 421–428. DOI logoGoogle Scholar
Guldenmund, P., Vanhaudenhuyse, A., Boly, M., Laureys, S., & Soddu, A. (2012). A default mode of brain function in altered states of consciousness. Archives Italiennes de Biologie, 150(2–3), 107–121.Google Scholar
Heine, L., Soddu, A., Gomez, F., Vanhaudenhuyse, A., Tshibanda, L., Thonnard, M., Charland-Verville, V., Kirsch, M., Laureys, S., & Demertzi, A. (2012). Resting state networks and consciousness: Alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness states. Frontiers in Psychology, 3, 295. DOI logoGoogle Scholar
Heinke, W., Fiebach, C.J., Schwarzbauer, C., Meyer, M., Olthoff, D., & Alter, K. (2004). Sequential effects of propofol on functional brain activation induced by auditory language processing: An event-related functional magnetic resonance imaging study. British Journal of Anaesthesia, 92(5), 641–650. DOI logoGoogle Scholar
Horovitz, S.G., Braun, A.R., Carr, W.S., Picchioni, D., Balkin, T.J., Fukunaga, M., & Duyn, J.H. (2009). Decoupling of the brain’s default mode network during deep sleep. Proceedings of the National Academy of Sciences USA, 106(27), 11376–11381. DOI logoGoogle Scholar
James, W. (1890). Principles of psychology. London, UK: Macmillan. DOI logoGoogle Scholar
Jennett, B., & Plum, F. (1972). Persistent vegetative state after brain damage. A syndrome in search of a name. Lancet, 1(7753), 734–737. DOI logoGoogle Scholar
John, E.R., & Prichep, L.S. (2005). The anesthetic cascade: A theory of how anesthesia suppresses consciousness. Anesthesiology, 102(2), 447–471. DOI logoGoogle Scholar
Jones, B.E. (2003). Arousal systems. Frontiers in Bioscience, 8, s438–s451. DOI logoGoogle Scholar
Kaisti, K.K., Langsjo, J.W., Aalto, S., Oikonen, V., Sipila, H., Teras, M., Hinkka, S., Metsähonkala, L., & Scheinin, H. (2003). Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology, 99(3), 603–613. DOI logoGoogle Scholar
Keifer, J.C., Baghdoyan, H.A., & Lydic, R. (1996). Pontine cholinergic mechanisms modulate the cortical electroencephalographic spindles of halothane anesthesia. Anesthesiology, 84(4), 945–954. DOI logoGoogle Scholar
Laird, A.R., Fox, P.M., Eickhoff, S.B., Turner, J.A., Ray, K.L., Mckay, D.R., Glahn, D.C., Beckmann, C.F., Smith, S.M., & Fox, P.T. (2011). Behavioral interpretations of intrinsic connectivity networks. Journal of Cognitive Neuroscience, 23(12), 4022–4037. DOI logoGoogle Scholar
Larson-Prior, L.J., Zempel, J.M., Nolan, T.S., Prior, F.W., Snyder, A.Z., & Raichle, M.E. (2009). Cortical network functional connectivity in the descent to sleep. Proceedings of the National Academy of Sciences USA, 106(11), 4489–4494. DOI logoGoogle Scholar
Laureys, S. (2004). Functional neuroimaging in the vegetative state. Neurorehabilitation, 19(4), 335–341.Google Scholar
. (2005). The neural correlate of (un)awareness: Lessons from the vegetative state. Trends in Cognitive Sciences, 9(12), 556–559. DOI logoGoogle Scholar
Laureys, S., Berré, J., & Goldman, S. (2001). Cerebral function in coma, vegetative state, minimally conscious state, locked-in syndrome and brain death. In J.L. Vincent (Ed.), Yearbook of intensive care and emergency medicine (pp. 386–396). Berlin: Springer-Verlag.Google Scholar
Laureys, S., Celesia, G.G., Cohadon, F., Lavrijsen, J., León-Carrión, J., Sannita, W.G., Sazbon, L., Schmutzhard, E., von Wild, K.R., Zeman, A., & Dolce, G. (2010). Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Medicine, 8, 68. DOI logoGoogle Scholar
Laureys, S., Faymonville, M.-E., Degueldre, C., Fiore, G.D., Damas, P., Lambermont, B., Janssens, N., Aerts, J., Franck, G., Luxen, A., Moonen, G., Lamy, M., & Maquet, P. (2000). Auditory processing in the vegetative state. Brain, 123(8), 1589–1601. DOI logoGoogle Scholar
Laureys, S., Faymonville, M.-E., Goldman, S., Degueldre, C., Phillips, C., Lambermont, B., Aerts, J., Lamy, M., Luxen, A., Franck, G., & Maquet, P. (2000). Impaired cerebral connectivity in vegetative state. In A. Gjedde, S.B. Hansen, G.M. Knudsen, & O.B. Paulson (Eds.), Physiological imaging of the brain with PET (pp.329–334). San Diego, CA: Academic Press.Google Scholar
Laureys, S., Faymonville, M.-E., Luxen, A., Lamy, M., Franck, G., & Maquet, P. (2000). Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet, 355(9217), 1790–1791. DOI logoGoogle Scholar
Laureys, S., Goldman, S., Phillips, C., Van Bogaert, P., Aerts, J., Luxen, A., Franck, G., & Maquet, P. (1999). Impaired effective cortical connectivity in vegetative state: Preliminary investigation using PET. Neuroimage, 9(4), 377–382. DOI logoGoogle Scholar
Laureys, S., Lemaire, C., Maquet, P., Phillips, C., & Franck, G. (1999). Cerebral metabolism during vegetative state and after recovery to consciousness. Journal of Neurology, Neurosurgery & Psychiatry, 67(1), 121–122. DOI logoGoogle Scholar
Laureys, S., Owen, A.M., & Schiff, N.D. (2004). Brain function in coma, vegetative state, and related disorders. Lancet Neurology, 3(9), 537–546. DOI logoGoogle Scholar
Laureys, S., Pellas, F., Van Eeckhout, P., Ghorbel, S., Schnakers, C., Perrin, F., Berré, J., Faymonville, M.E., Pantke, K.H., Damas, F., Lamy, M., Moonen, G., & Goldman, S. (2005). The locked-in syndrome: What is it like to be conscious but paralyzed and voiceless? Progress in Brain Research, 150, 495–511. DOI logoGoogle Scholar
Laureys, S., Perrin, F., Faymonville, M.-E., Schnakers, C., Boly, M., Bartsch, V., Majerus, S., Moonen, G., & Maquet, P. (2004). Cerebral processing in the minimally conscious state. Neurology, 63(5), 916–918. DOI logoGoogle Scholar
Laureys, S., & Schiff, N.D. (2012). Coma and consciousness: Paradigms (re)framed by neuroimaging. Neuroimage, 61(2), 478–491. DOI logoGoogle Scholar
Lehembre, R., Bruno, M.-A., Vanhaudenhuyse, A., Chatelle, C., Cologan, V., Leclercq, Y., Soddu, A., Macq, B., Laureys, S., & Noirhomme, Q. (2012). Resting-state EEG study of comatose patients: A connectivity and frequency analysis to find differences between vegetative and minimally conscious states. Functional Neurology, 27(1), 41–47.Google Scholar
Lehembre, R., Gosseries, O., Lugo, Z., Jedidi, Z., Chatelle, C., Sadzot, B., Laureys, S., & Noirhomme, Q. (2012). Electrophysiological investigations of brain function in coma, vegetative and minimally conscious patients. Archives Italiennes de Biologie, 150(2–3), 122–139.Google Scholar
Leslie, K., Sleigh, J., Paech, M.J., Voss, L., Lim, C.W., & Sleigh, C. (2009). Dreaming and electroencephalographic changes during anesthesia maintained with propofol or desflurane. Anesthesiology, 111(3), 547–555. DOI logoGoogle Scholar
Luauté, J., Maucort-Boulch, D., Tell, L., Quelard, F., Sarraf, T., Iwaz, J., Boisson, D., & Fischer, C. (2010). Long-term outcomes of chronic minimally conscious and vegetative states. Neurology, 75(3), 246–252. DOI logoGoogle Scholar
Lull, N., Noe, E., Lull, J.J., Garcia-Panach, J., Chirivella, J., Ferri, J., López-Aznar, D., Sopena, P., & Robles, M. (2010). Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: Relationship with consciousness and cognition. Brain Injury, 24(9), 1098–1107. DOI logoGoogle Scholar
Lydic, R., & Baghdoyan, H.A. (2005). Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology, 103(6), 1268–1295. DOI logoGoogle Scholar
Majerus, S., Gill-Thwaites, H., Andrews, K., & Laureys, S. (2005). Behavioral evaluation of consciousness in severe brain damage. Progress in Brain Research, 150, 397–413. DOI logoGoogle Scholar
Maquet, P. (2010). Understanding non rapid eye movement sleep through neuroimaging. World Journal of Biological Psychiatry, 11(Suppl. 1), 9–15. DOI logoGoogle Scholar
Maquet, P., Dive, D., Salmon, E., Sadzot, B., Franco, G., Poirrier, R., von Frenckell, R., & Franck, G. (1990). Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-d-glucose method. Brain Research, 513(1), 136–143. DOI logoGoogle Scholar
Maquet, P., Ruby, P., Maudoux, A., Albouy, G., Sterpenich, V., Dang-Vu, T., Desseilles, M., Boly, M., Perrin, F., Peigneux, P., & Laureys, S. (2005). Human cognition during REM sleep and the activity profile within frontal and parietal cortices: A reappraisal of functional neuroimaging data. Progress in Brain Research, 150, 219–227. DOI logoGoogle Scholar
Massimini, M., Boly, M., Casali, A., Rosanova, M., & Tononi, G. (2009). A perturbational approach for evaluating the brain’s capacity for consciousness. Progress in Brain Research, 177, 201–214. DOI logoGoogle Scholar
Massimini, M., Ferrarelli, F., Huber, R., Esser, S.K., Singh, H., & Tononi, G. (2005). Breakdown of cortical effective connectivity during sleep. Science, 309(5744), 2228–2232. DOI logoGoogle Scholar
Massimini, M., Ferrarelli, F., Murphy, M., Huber, R., Riedner, B., Casarotto, S., & Tononi, G. (2010). Cortical reactivity and effective connectivity during REM sleep in humans. Cognitive Neuroscience, 1(3), 176–183. DOI logoGoogle Scholar
Menon, V., & Uddin, L.Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5–6), 655–667. DOI logoGoogle Scholar
Monti, M.M., Vanhaudenhuyse, A., Coleman, M.R., Boly, M., Pickard, J.D., Tshibanda, L., Owen, A.M., & Laureys, S. (2010). Willful modulation of brain activity in disorders of consciousness. New England Journal of Medicine, 362(7), 579–589. DOI logoGoogle Scholar
Murphy, M., Bruno, M.-A., Riedner, B.A., Boveroux, P., Noirhomme, Q., Landsness, E.C., Brichant, J.F., Phillips, C., Massimini, M., Laureys, S., Tononi, G., & Boly, M. (2011). Propofol anesthesia and sleep: A high-density EEG study. Sleep, 34(3), 283–291.Google Scholar
Murphy, M., Riedner, B.A., Huber, R., Massimini, M., Ferrarelli, F., & Tononi, G. (2009). Source modeling sleep slow waves. Proceedings of the National Academy of Sciences USA, 106(5), 1608–1613. DOI logoGoogle Scholar
Naci, L., Cusack, R., Jia, V.Z., & Owen, A.M. (2013). The brain’s silent messenger: Using selective attention to decode human thought for brain-based communication. Journal of Neuroscience, 33(22), 9385–9393. DOI logoGoogle Scholar
Nir, Y., & Tononi, G. (2010). Dreaming and the brain: From phenomenology to neurophysiology. Trends in Cognitive Sciences, 14(2), 88–100. DOI logoGoogle Scholar
Owen, A.M., Coleman, M.R., Boly, M., Davis, M.H., Laureys, S., & Pickard, J.D. (2006). Detecting awareness in the vegetative state. Science, 313(5792), 1402. DOI logoGoogle Scholar
Perrin, F., Schnakers, C., Schabus, M., Degueldre, C., Goldman, S., Bredart, S., Faymonville, M.E., Lamy, M., Moonen, G., Luxen, A., Maquet, P., & Laureys, S. (2006). Brain response to one’s own name in vegetative state, minimally conscious state, and locked-in syndrome. Archives of Neurology, 63(4), 562–569. DOI logoGoogle Scholar
Phillips, C.L., Bruno, M.-A., Maquet, P., Boly, M., Noirhomme, Q., Schnakers, C., Vanhaudenhuyse, A., Bonjean, M., Hustinx, R., Moonen, G., Luxen, A., & Laureys, S. (2011). “Relevance vector machine” consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients. Neuroimage, 56(2), 797–808. DOI logoGoogle Scholar
Ploner, M., Lee, M.C., Wiech, K., Bingel, U., & Tracey, I. (2010). Prestimulus functional connectivity determines pain perception in humans. Proceedings of the National Academy of Sciences USA, 107(1), 355–360. DOI logoGoogle Scholar
Plourde, G., Belin, P., Chartrand, D., Fiset, P., Backman, S.B., Xie, G., & Zatorre, R.J. (2006). Cortical processing of complex auditory stimuli during alterations of consciousness with the general anesthetic propofol. Anesthesiology, 104(3), 448–457. DOI logoGoogle Scholar
Plum, F., & Posner, J.B. (1983). The diagnosis of stupor and coma. Philadelphia, PA: FA Davis.Google Scholar
Posner, J.B., Saper, C.B., Schiff, N.D., & Plum, F. (2007). Plum and Posner’s diagnosis of stupor and coma. New York, NY: Oxford University Press.Google Scholar
Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA, 98(2), 676–682. DOI logoGoogle Scholar
Rechtshaffen, A. (1973). The psychophysiology of mental activity during sleep. In F. McGuigan & R. Schoonover (Eds.), The psychophysiology of thinking: Studies of covert processes (pp.153–205). Ann Arbor, MI: Academic Press. DOI logoGoogle Scholar
Rex, S., Meyer, P.T., Baumert, J.H., Rossaint, R., Fries, M., Bull, U., & Schaefer, W.M. (2008). Positron emission tomography study of regional cerebral blood flow and flow-metabolism coupling during general anaesthesia with xenon in humans. British Journal of Anaesthesia, 100(5), 667–675. DOI logoGoogle Scholar
Riedner, B.A., Vyazovskiy, V.V., Huber, R., Massimini, M., Esser, S., Murphy, M., & Tononi, G. (2007). Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep, 30(12), 1643–1657.Google Scholar
Roberts, K.L., & Hall, D.A. (2008). Examining a supramodal network for conflict processing: A systematic review and novel functional magnetic resonance imaging data for related visual and auditory stroop tasks. Journal of Cognitive Neuroscience, 20(6), 1063–1078. DOI logoGoogle Scholar
Rodriguez-Moreno, D., Schiff, N.D., Giacino, J., Kalmar, K., & Hirsch, J. (2010). A network approach to assessing cognition in disorders of consciousness. Neurology, 75(21), 1871–1878. DOI logoGoogle Scholar
Rosanova, M., Gosseries, O., Casarotto, S., Boly, M., Casali, A.G., Bruno, M.-A., Mariotti, M., Boveroux, P., Tononi, G., Laureys, S., & Massimini, M. (2012). Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain, 135(4), 1308–1320. DOI logoGoogle Scholar
Rowley, G., & Fielding, K. (1991). Reliability and accuracy of the Glasgow Coma Scale with experienced and inexperienced users. Lancet, 337(8740), 535–538. DOI logoGoogle Scholar
Samann, P.G., Wehrle, R., Hoehn, D., Spoormaker, V.I., Peters, H., Tully, C., Holsboer, F., & Czisch, M. (2011). Development of the brain’s default mode network from wakefulness to slow wave sleep. Cerebral Cortex, 21(9), 2082–2093. DOI logoGoogle Scholar
Sanders, R.D., Tononi, G., Laureys, S., & Sleigh, J.W. (2012). Unresponsiveness not equal unconsciousness. Anesthesiology, 116(4), 946–959. DOI logoGoogle Scholar
Schiff, N.D. (2006). Multimodal neuroimaging approaches to disorders of consciousness. Jouranl of Head Trauma Rehabilitation, 21(5), 388–397. DOI logoGoogle Scholar
Schiff, N.D., Giacino, J.T., Kalmar, K., Victor, J.D., Baker, K., Gerber, M., Fritz, B., Eisenberg, B., Biondi, T., O’Connor, J., Kobylarz, E.J., Farris, S., Machado, A., McCagg, C., Plum, F., Fins, J.J., & Rezai, A.R. (2007). Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature, 448(7153), 600–603. DOI logoGoogle Scholar
Schiff, N.D., Rodriguez-Moreno, D., Kamal, A., Kim, K.H., Giacino, J.T., Plum, F., & Hirsch, J. (2005). fMRI reveals large-scale network activation in minimally conscious patients. Neurology, 64(3), 514–523. DOI logoGoogle Scholar
Schnakers, C. (2012). Clinical assessment of patients with disorders of consciousness. Archives Italiennes de Biologie, 150(2–3), 36–43.Google Scholar
Schnakers, C., Giacino, J., Kalmar, K., Piret, S., Lopez, E., Boly, M., Malone, R., & Laureys, S. (2006). Does the FOUR score correctly diagnose the vegetative and minimally conscious states? Annals of Neurology, 60(6), 744–745. DOI logoGoogle Scholar
Schnakers, C., Ledoux, D., Majerus, S., Damas, P., Damas, F., Lambermont, B., Lamy, M., Boly, M., Vanhaudenhuyse, A., Moonen, G., & Laureys, S. (2008). Diagnostic and prognostic use of bispectral index in coma, vegetative state and related disorders. Brain Injury, 22(12), 926–931. DOI logoGoogle Scholar
Schnakers, C., Perrin, F., Schabus, M., Hustinx, R., Majerus, S., Moonen, G., Boly, M., Vanhaudenhuyse, A., Bruno, M.A., & Laureys, S. (2009). Detecting consciousness in a total locked-in syndrome: An active event-related paradigm. Neurocase, 15(4), 271–277. DOI logoGoogle Scholar
Schnakers, C., Perrin, F., Schabus, M., Majerus, S., Ledoux, D., Damas, P., Boly, M., Vanhaudenhuyse, A., Bruno, M.A., Moonen, G., & Laureys, S. (2008). Voluntary brain processing in disorders of consciousness. Neurology, 71(20), 1614–1620. DOI logoGoogle Scholar
Schnakers, C., Vanhaudenhuyse, A., Giacino, J., Ventura, M., Boly, M., Majerus, S., Moonen, G., & Laureys, S. (2009). Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment. BMC Neurology, 9, 35. DOI logoGoogle Scholar
Schwartz, J., & Roth, T. (2008). Neurophysiology of sleep and wakefulness: Basic science and clinical implications. Current Neuropharmacology, 6(4), 367–378. DOI logoGoogle Scholar
Searle, J.R. (2000). Consciousness. Annual Review of Neuroscience, 23, 557–578. DOI logoGoogle Scholar
Seel, R.T., Sherer, M., Whyte, J., Katz, D.I., Giacino, J.T., Rosenbaum, A.M., Hammond, F.M., Kalmar, K., Pape, T.L., Zafonte, R., Biester, R.C., Kaelin, D., Kean, J., & Zasler, N. (2010). Assessment scales for disorders of consciousness: Evidence-based recommendations for clinical practice and research. Archives of Physical Medecine and Rehabilitation, 91(12), 1795–1813. DOI logoGoogle Scholar
Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., & Greicius, M.D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356. DOI logoGoogle Scholar
Shafer, A. (1995). Metaphor and anesthesia. Anesthesiology, 83(6), 1331–1342. DOI logoGoogle Scholar
Siclari, F., Larocque, J.J., Postle, B.R., & Tononi, G. (2013). Assessing sleep consciousness within subjects using a serial awakening paradigm. Frontiers in Psychology, 4, 542. DOI logoGoogle Scholar
Silva, S., Alacoque, X., Fourcade, O., Samii, K., Marque, P., Woods, R., Mazziotta, J., Chollet F., & Loubinoux, I. (2010). Wakefulness and loss of awareness: Brain and brainstem interaction in the vegetative state. Neurology, 74(4), 313–320. DOI logoGoogle Scholar
Sleigh, J.W., Andrzejowski, J., Steyn-Ross, A., & Steyn-Ross, M. (1999). The bispectral index: A measure of depth of sleep? Anesthesia and Analgesia, 88(3), 659–661. DOI logoGoogle Scholar
Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, M.P., Mackay, C.E., Filippini, N., Watkins, K.E., Toro, R., Laird, A.R., & Beckmann, C.F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences USA, 106(31), 13040–13045. DOI logoGoogle Scholar
Steriade, M. (1996). Arousal: Revisiting the reticular activating system. Science, 272(5259), 225–226. DOI logoGoogle Scholar
Stickgold, R., Malia, A., Fosse, R., Propper, R., & Hobson, J.A. (2001). Brain-mind states: I. Longitudinal field study of sleep/wake factors influencing mentation report length. Sleep, 24(2), 171–179.Google Scholar
Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2(7872), 81–84. DOI logoGoogle Scholar
The Multi-Society Task Force on PVS. (1994). New England Journal of Medicine, 330(22), 1572–1579. DOI logoGoogle Scholar
Tononi, G. (2004). An information integration theory of consciousness. BMC Neuroscience, 5, 42. DOI logoGoogle Scholar
. (2008). Consciousness as integrated information: A provisional manifesto. Biological Bulletin, 215(3), 216–242. DOI logoGoogle Scholar
. (2012). Integrated information theory of consciousness: An updated account. Archives Italiennes de Biologie, 150(4), 293–329.Google Scholar
Tononi, G., & Laureys, S. (2009). The neurology of consciousness: An overview. In S. Laureys & G. Tononi (Eds.), The neurology of consciousness: Cogntive neuroscience and neuropathology (pp.375–412). Oxford, UK: Elsevier Ltd. DOI logoGoogle Scholar
Vanhaudenhuyse, A., Demertzi, A., Schabus, M., Noirhomme, Q., Bredart, S., Boly, M., Phillips, C., Soddu, A., Luxen, A., Moonen, G., & Laureys, S. (2011). Two distinct neuronal networks mediate the awareness of environment and of self. Journal of Cognitive Neuroscience, 23(3), 570–578. DOI logoGoogle Scholar
Vanhaudenhuyse, A., Laureys, S., & Perrin, F. (2008). Cognitive event-related potentials in comatose and post-comatose states. Neurocritical Care, 8(2), 262–270. DOI logoGoogle Scholar
Vanhaudenhuyse, A., Noirhomme, Q., Tshibanda, L.J., Bruno, M.-A., Boveroux, P., Schnakers, C., Soddu, A., Perlbarg, V., Ledoux, D., Brichant, J.F., Moonen, G., Maquet, P., Greicius, M.D., Laureys, S., & Boly, M. (2010). Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain, 133(1), 161–171. DOI logoGoogle Scholar
Velly, L.J., Rey, M.F., Bruder, N.J., Gouvitsos, F.A., Witjas, T., Regis, J.M., Peragut, J.C., & Gouin, F.M. (2007). Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology, 107(2), 202–212. DOI logoGoogle Scholar
Veselis, R.A., Feshchenko, V.A., Reinsel, R.A., Beattie, B., & Akhurst, T.J. (2005). Propofol and thiopental do not interfere with regional cerebral blood flow response at sedative concentrations. Anesthesiology, 102(1), 26–34. DOI logoGoogle Scholar
Veselis, R.A., Feshchenko, V.A., Reinsel, R.A., Dnistrian, A.M., Beattie, B., & Akhurst, T.J. (2004). Thiopental and propofol affect different regions of the brain at similar pharmacologic effects. Anesthesia and Analgesia, 99(2), 399–408.Google Scholar
Vogel, D., Markl, A., Yu, T., Kotchoubey, B., Lang, S., & Müller, F. (2013). Can mental imagery functional magnetic resonance imaging predict recovery in patients with disorders of consciousness? Archives of Physical Medicine and Rehabilitation, 94(10), 1891–1898. DOI logoGoogle Scholar
Vogt, B.A., & Laureys, S. (2005). Posterior cingulate, precuneal and retrosplenial cortices: Cytology and components of the neural network correlates of consciousness. Progress in Brain Research, 150, 205–217. DOI logoGoogle Scholar
White, N.S., & Alkire, M.T. (2003). Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. Neuroimage, 19(2), 402–411. DOI logoGoogle Scholar
Wiech, K., Lin, C.S., Brodersen, K.H., Bingel, U., Ploner, M., & Tracey, I. (2010). Anterior insula integrates information about salience into perceptual decisions about pain. Journal of Neuroscience, 30(48), 16324–16331. DOI logoGoogle Scholar
Wijdicks, E.F.M., Bamlet, W.R., Maramattom, B.V., Manno, E.M., & McClelland, R.L. (2005). Validation of a new coma scale: The FOUR score. Annals of Neurology, 58(4), 585–593. DOI logoGoogle Scholar
Zeman, A. (2001). Consciousness. Brain, 124(7), 1263–1289. DOI logoGoogle Scholar