Part of
How the Brain Got Language – Towards a New Road Map
Edited by Michael A. Arbib
[Benjamins Current Topics 112] 2020
► pp. 336351
References (71)
References
Arbib, M. A. (2017). Dorsal and ventral streams in the evolution of the language-ready brain: Linking language to the world. J. Neurolinguistics 43, 228–253. DOI logoGoogle Scholar
(2016). Toward the Language-Ready Brain: Biological Evolution and Primate Comparisons. Psychon. Bull. Rev.Google Scholar
Avants, B., Gee, J. (2003). The shape operator for differential analysis of images. Inf Process Med Imaging 18, 101–13. DOI logoGoogle Scholar
Avants, B. B., Gee, J. C., Schoenemann, P. T., Monge, J., Lewis, J. E., Holloway, R. L. (2005). A new method for assessing endocast morphology: calculating local curvature from 3D CT images. Am. J. Phys. Anthropol. 126, 67.Google Scholar
Begun, D., Walker, A. (1993). The endocast. Nariokotome Homo Erectus Skelet. 326–358. DOI logoGoogle Scholar
Begun, D. R., Kordos, L. (2004). Cranial evidence of the evolution of intelligence in fossil apes, in: Russon, A. E., Begun, D. R. (Eds.), The Evolution of Thought: Evolutionary Origins of Great Ape Intelligence. Cambridge University Press, Cambridge, pp. 260–279. DOI logoGoogle Scholar
Bergman, T. J., Beehner, J. C., Cheney, D. L., Seyfarth, R. M. (2003). Hierarchical classification by rank and kinship in baboons. Science 302, 1234–1236. DOI logoGoogle Scholar
Berwick, R. C., Friederici, A. D., Chomsky, N., Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends Cogn. Sci. 17, 89–98. DOI logoGoogle Scholar
Bock, W. J. (1959). Preadaptation and Multiple Evolutionary Pathways. Evolution 13, 194–211. DOI logoGoogle Scholar
Bramão, I., Faísca, L., Forkstam, C., Reis, A., Petersson, K. M. (2010). Cortical brain regions associated with color processing: An FMRI study. Open Neuroimaging J. 4, 164–173. DOI logoGoogle Scholar
Bruner, E., Preuss, T. M., Chen, X., Rilling, J. K. (2016). Evidence for expansion of the precuneus in human evolution. Brain Struct. Funct. DOI logoGoogle Scholar
Changizi, M. A., Shimojo, S. (2005). Parcellation and area-area connectivity as a function of neocortex size. Brain. Behav. Evol. 66, 88–98. DOI logoGoogle Scholar
Christiansen, M. H., Kelly, M. L., Shillcock, R. C., Greenfield, K. (2010). Impaired artificial grammar learning in agrammatism. Cognition 116, 382–393. DOI logoGoogle Scholar
DeCasien, A. R., Williams, S. A., Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112. DOI logoGoogle Scholar
Dunbar, R. I. M. (2003). The Social Brain: Mind, Language, and Society in Evolutionary Perspective. Annu. Rev. Anthropol. 32, 163–81. DOI logoGoogle Scholar
Falk, D. (2014). Interpreting sulci on hominin endocasts: old hypotheses and new findings. Front. Hum. Neurosci. 8, 1–11. DOI logoGoogle Scholar
(1983). Cerebral cortices of East African early hominids. Science 221, 1072–1074. DOI logoGoogle Scholar
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., Jiang, T. (2016). The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cereb. Cortex 26, 3508–3526. DOI logoGoogle Scholar
Fedorenko, E., Duncan, J., Kanwisher, N. (2012). Language-Selective and Domain-General Regions Lie Side by Side within Broca’s Area. Curr. Biol. 22, 2059–2062. DOI logoGoogle Scholar
Gilbert, W. H., Holloway, R. L., Kubo, D., Kono, R. T., Suwa, G. (2008). Tomographic analysis of the Daka calvaria. Homo Erectus Pleistocene Evid. Middle Awash Ethiop. Univ. Calif. Press Berkeley Los Angel. 329–347.Google Scholar
Gil-da-Costa, R., Martin, A., Lopes, M. A., Munoz, M., Fritz, J. B., Braun, A. R. (2006). Species-specific calls activate homologs of Broca’s and Wernicke’s areas in the macaque. Nat Neurosci 9, 1064–1070. DOI logoGoogle Scholar
Gong, T., Shuai, L., Zhang, M. (2014). Modelling language evolution: Examples and predictions. Phys. Life Rev. 11, 280–302. DOI logoGoogle Scholar
Grabner, G., Janke, A. L., Budge, M. M., Smith, D., Pruessner, J., Collins, D. L. (2006). Symmetric Atlasing and Model Based Segmentation: An Application to the Hippocampus in Older Adults, in: Larsen, R., Nielsen, M., Sporring, J. (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1–6, 2006. Proceedings, Part II. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 58–66.
Grodzinsky, Y. (2000). The neurology of syntax: language use without Broca’s area. Behav. Brain Sci. 23, 1–21; discussion 21–71. DOI logoGoogle Scholar
Harmand, S., Lewis, J. E., Feibel, C. S., Lepre, C. J., Prat, S., Lenoble, A., Boës, X., Quinn, R. L., Brenet, M., Arroyo, A., Taylor, N., Clément, S., Daver, G., Brugal, J. -P., Leakey, L., Mortlock, R. A., Wright, J. D., Lokorodi, S., Kirwa, C., Kent, D. V., Roche, H. (2015). 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315. DOI logoGoogle Scholar
Holloway, R. L. (1983). Human paleontological evidence relevant to language behavior. Hum. Neurobiol. 2, 105–114.Google Scholar
(1980). Indonesian “Solo” (Ngandong) endocranial reconstructions: Some preliminary obserbations and comparisons with Neanderthal and Homo erectus groups. Am. J. Phys. Anthropol. 53, 285–295. DOI logoGoogle Scholar
(1976). Paleoneurological evidence for language origins. Ann. N. Y. Acad. Sci. 280, 330–348. DOI logoGoogle Scholar
Holloway, R. L., Broadfield, D. C., Yuan, M. S. (2004). The Human Fossil Record, Volume 3. Brain Endocasts – The Paleoneurological Evidence, The Human Fossil Record. John Wiley & Sons, Hoboken. DOI logoGoogle Scholar
Humphrey, N. (1984). The social function of intellect, in: Consciousness Regained. Oxford University Press, Oxford, pp. 14–28.Google Scholar
Isaac, G. L. (1976). Stages of cultural elaboration in the pleistocene: Possible archaeological indicators of the development of language capabilities. Ann. N. Y. Acad. Sci. 280, 275–288. DOI logoGoogle Scholar
Jacob, F. (1977). Evolution and tinkering. Science 196, 1161–1166. DOI logoGoogle Scholar
Jerison, H. J. (1985). Animal intelligence as encephalization. Philos. Trans. R. Soc. Lond. Ser. B 308, 21–35. DOI logoGoogle Scholar
Keller, S. S., Roberts, N., Hopkins, W. (2009). A comparative magnetic resonance imaging study of the anatomy, variability, and asymmetry of Broca’s area in the human and chimpanzee brain. J Neurosci 29, 14607–16. DOI logoGoogle Scholar
Lieberman, P. (2000). Human language and our reptilian brain : the subcortical bases of speech, syntax, and thought, Perspectives in cognitive neuroscience. Harvard University Press, Cambridge, Mass.Google Scholar
Mars, R. B., Sallet, J., Neubert, F. -X., Rushworth, M. F. (2013). Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proc. Natl. Acad. Sci. 110, 10806–10811. DOI logoGoogle Scholar
Mayr, E. (1978). Evolution. Sci. Am. 239, 47–55. DOI logoGoogle Scholar
Miller, G. A., Gildea, P. M. (1991). How children learn words, in: Wang, W. S. -Y. (Ed.), The Emergence of Language: Development and Evolution. W. H. Freeman, New York, pp. 150–158.Google Scholar
Morgan, T. J. H., Uomini, N. T., Rendell, L. E., Chouinard-Thuly, L., Street, S. E., Lewis, H. M., Cross, C. P., Evans, C., Kearney, R., de la Torre, I., Whiten, A., Laland, K. N. (2015). Experimental evidence for the co-evolution of hominin tool-making teaching and language. Nat. Commun. 6, 6029. DOI logoGoogle Scholar
Nakajima, T., Hosaka, R., Tsuda, I., Tanji, J., Mushiake, H. (2013). Two-Dimensional Representation of Action and Arm-Use Sequences in the Presupplementary and Supplementary Motor Areas. J. Neurosci. 33, 15533–15544. DOI logoGoogle Scholar
Petersson, K. -M., Folia, V., Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain Lang. 120, 83–95. DOI logoGoogle Scholar
Petrides, M., Cadoret, G., Mackey, S. (2005). Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature 435, 1235–8. DOI logoGoogle Scholar
Petrides, M., Pandya, D. N. (2009). Distinct Parietal and Temporal Pathways to the Homologues of Broca’s Area in the Monkey. PLoS Biol. 7, e1000170. DOI logoGoogle Scholar
Picton, T. W. (1992). The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 9, 456–479. DOI logoGoogle Scholar
Powell, A., Shennan, S., Thomas, M. G. (2009). Late Pleistocene Demography and the Appearance of Modern Human Behavior. Science 324, 1298–1301. DOI logoGoogle Scholar
Powell, L. E., Isler, K., Barton, R. A. (2017). Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci. 284, 20171765. DOI logoGoogle Scholar
Poza-Rey, E. M., Lozano, M., Arsuaga, J. L. (2017). Brain asymmetries and handedness in the specimens from the Sima de los Huesos site (Atapuerca, Spain). Quat. Int. 433, 32–44. DOI logoGoogle Scholar
Putt, S. S., Wijeakumar, S., Franciscus, R. G., Spencer, J. P. (2017). The functional brain networks that underlie Early Stone Age tool manufacture. Nat. Hum. Behav. DOI logoGoogle Scholar
Savage-Rumbaugh, E. S., Murphy, J., Sevcik, R. A., Brakke, K. E., Williams, S. L., Rumbaugh, D. M. (1993). Language comprehension in ape and child. Monogr. Soc. Res. Child Dev. 58, 1–222. DOI logoGoogle Scholar
Schenker, N. M., Buxhoeveden, D. P., Blackmon, W. L., Amunts, K., Zilles, K., Semendeferi, K. (2008). A Comparative Quantitative Analysis of Cytoarchitecture and Minicolumnar Organization in Broca’s Area in Humans and Great Apes. J. Comp. Neurol. 510, 117–128. DOI logoGoogle Scholar
Schenker, N. M., Hopkins, W. D., Spocter, M. A., Garrison, A. R., Stimpson, C. D., Erwin, J. M., Hof, P. R., Sherwood, C. C. (2010). Broca’s area homologue in chimpanzees (Pan troglodytes): probabilistic mapping, asymmetry, and comparison to humans. Cereb. Cortex 20, 730–42. DOI logoGoogle Scholar
Schoenemann, P. T. (2017). A complex-adaptive-systems approach to the evolution of language and the brain, in: Mufwene, S. S., Coupé, C., Pellegrino, F. (Eds.), Complexity in Language: Developmental and Evolutionary Perspectives, Cambridge Approaches to Language Contact. Cambridge University Press, pp. 67–100. DOI logoGoogle Scholar
(2013). Hominid Brain Evolution, in: Begun, D. R. (Ed.), A Companion to Paleoanthropology. Wiley-Blackwell, Chichester, UK, pp. 136–164. DOI logoGoogle Scholar
(2012). Evolution of brain and language, in: Hofman, M. A., Falk, D. (Eds.), Progress in Brain Research. Elsevier, Amsterdam: The Netherlands, pp. 443–459.Google Scholar
(1999). Syntax as an emergent characteristic of the evolution of semantic complexity. Minds Mach. 9, 309–346. DOI logoGoogle Scholar
Schoenemann, P. T., Holloway, R. L. (2016). Brain function and Broca’s Cap: A meta-analysis of fMRI studies. Am. J. Phys. Anthropol. 159, 283.Google Scholar
Schoenemann, P. T., Sheehan, M. J., Glotzer, L. D. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci. 8, 242–52. DOI logoGoogle Scholar
Semaw, S., Rogers, M. J., Quade, J., Renne, P. R., Butler, R. F., Dominguez-Rodrigo, M., Stout, D., Hart, W. S., Pickering, T., Simpson, S. W. (2003). 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J Hum Evol 45, 169–77. DOI logoGoogle Scholar
Seyfarth, R. M., Cheney, D. L., Marler, P. (1980). Monkey Responses to Three Different Alarm Calls: Evidence of Predator Classification and Semantic Communication. Science 210, 801–803. DOI logoGoogle Scholar
Smith, K., Kirby, S., Brighton, H. (2003). Iterated learning: a framework for the emergence of language. Artif. Life 9, 371–86. DOI logoGoogle Scholar
Snowdon, C. T. (1990). Language capacities of nonhuman animals. Yearb. Phys. Anthropol. 33, 215–243. DOI logoGoogle Scholar
Stephan, H., Frahm, H., Baron, G. (1981). New and revised data on volumes of brain structures in Insectivores and Primates. Folia Primatol. (Basel) 35, 1–29. DOI logoGoogle Scholar
Stout, D., Chaminade, T. (2012). Stone tools, language and the brain in human evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 75–87. DOI logoGoogle Scholar
Taglialatela, J. P., Russell, J. L., Schaeffer, J. A., Hopkins, W. D. (2008). Communicative signaling activates “Broca’s” homolog in chimpanzees. Curr Biol 18, 343–8. DOI logoGoogle Scholar
Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U A 94, 14792–7. DOI logoGoogle Scholar
Toth, N., Schick, K. (2009). The Importance of Actualistic Studies in Early Stone Age Research: Some Personal Reflections, in: Schick, K., Toth, N., Toth, N. (Eds.), The Cutting Edge: New Approaches to the Archaeology of Human Origins, Stone Age Institute Publication Series. Stone Age Institute Press, Gosport, IN, pp. 267–344.Google Scholar
Uylings, H. B. M., Van Eden, C. G. (1990). Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans, in: Uylings, H. B. M., Van Eden, C. G., De Bruin, J. P. C., Corner, M. A., Feenstra, M. G. P. (Eds.), Progress in Brain Research, Vol. 85, Progress in Brain Research. Elsevier Science Publishers, New York, pp. 31–62.Google Scholar
Wilkins, W. K., Wakefield, J. (1995). Brains evolution and neurolinguistic preconditions. Behav. Brain Sci. 18, 161–182. DOI logoGoogle Scholar
Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., Thiele, A., Griffiths, T. D., Marslen-Wilson, W. D., Petkov, C. I. (2015). Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nat. Commun. 6, 8901. DOI logoGoogle Scholar
Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen-Wilson, W. D., Smith, K., Petkov, C. I. (2013). Auditory Artificial Grammar Learning in Macaque and Marmoset Monkeys. J. Neurosci. 33, 18825–18835. DOI logoGoogle Scholar
Wilson, S. M., Galantucci, S., Tartaglia, M. C., Rising, K., Patterson, D. K., Henry, M. L., Ogar, J. M., DeLeon, J., Miller, B. L., Gorno-Tempini, M. L. (2011). Syntactic Processing Depends on Dorsal Language Tracts. Neuron 72, 397–403. DOI logoGoogle Scholar