Chapter published in:
How the Brain Got Language – Towards a New Road Map
Edited by Michael A. Arbib
[Benjamins Current Topics 112] 2020
► pp. 336351
References

References

Arbib, M. A.
(2017) Dorsal and ventral streams in the evolution of the language-ready brain: Linking language to the world. J. Neurolinguistics 43, 228–253. CrossrefGoogle Scholar
(2016) Toward the Language-Ready Brain: Biological Evolution and Primate Comparisons. Psychon. Bull. Rev.Google Scholar
Avants, B., Gee, J.
(2003) The shape operator for differential analysis of images. Inf Process Med Imaging 18, 101–13. CrossrefGoogle Scholar
Avants, B. B., Gee, J. C., Schoenemann, P. T., Monge, J., Lewis, J. E., Holloway, R. L.
(2005) A new method for assessing endocast morphology: calculating local curvature from 3D CT images. Am. J. Phys. Anthropol. 126, 67.Google Scholar
Begun, D., Walker, A.
(1993) The endocast. Nariokotome Homo Erectus Skelet. 326–358. CrossrefGoogle Scholar
Begun, D. R., Kordos, L.
(2004) Cranial evidence of the evolution of intelligence in fossil apes, in: Russon, A. E., Begun, D. R. (Eds.), The Evolution of Thought: Evolutionary Origins of Great Ape Intelligence. Cambridge University Press, Cambridge, pp. 260–279. CrossrefGoogle Scholar
Bergman, T. J., Beehner, J. C., Cheney, D. L., Seyfarth, R. M.
(2003) Hierarchical classification by rank and kinship in baboons. Science 302, 1234–1236. CrossrefGoogle Scholar
Berwick, R. C., Friederici, A. D., Chomsky, N., Bolhuis, J. J.
(2013) Evolution, brain, and the nature of language. Trends Cogn. Sci. 17, 89–98. CrossrefGoogle Scholar
Bock, W. J.
(1959) Preadaptation and Multiple Evolutionary Pathways. Evolution 13, 194–211. Crossref[ p. 348 ]Google Scholar
Bramão, I., Faísca, L., Forkstam, C., Reis, A., Petersson, K. M.
(2010) Cortical brain regions associated with color processing: An FMRI study. Open Neuroimaging J. 4, 164–173. CrossrefGoogle Scholar
Bruner, E., Preuss, T. M., Chen, X., Rilling, J. K.
(2016) Evidence for expansion of the precuneus in human evolution. Brain Struct. Funct. CrossrefGoogle Scholar
Changizi, M. A., Shimojo, S.
(2005) Parcellation and area-area connectivity as a function of neocortex size. Brain. Behav. Evol. 66, 88–98. CrossrefGoogle Scholar
Christiansen, M. H., Kelly, M. L., Shillcock, R. C., Greenfield, K.
(2010) Impaired artificial grammar learning in agrammatism. Cognition 116, 382–393. CrossrefGoogle Scholar
DeCasien, A. R., Williams, S. A., Higham, J. P.
(2017) Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112. CrossrefGoogle Scholar
Dunbar, R. I. M.
(2003) The Social Brain: Mind, Language, and Society in Evolutionary Perspective. Annu. Rev. Anthropol. 32, 163–81. CrossrefGoogle Scholar
Falk, D.
(2014) Interpreting sulci on hominin endocasts: old hypotheses and new findings. Front. Hum. Neurosci. 8, 1–11. CrossrefGoogle Scholar
(1983) Cerebral cortices of East African early hominids. Science 221, 1072–1074. CrossrefGoogle Scholar
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., Jiang, T.
(2016) The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cereb. Cortex 26, 3508–3526. CrossrefGoogle Scholar
Fedorenko, E., Duncan, J., Kanwisher, N.
(2012) Language-Selective and Domain-General Regions Lie Side by Side within Broca’s Area. Curr. Biol. 22, 2059–2062. CrossrefGoogle Scholar
Gilbert, W. H., Holloway, R. L., Kubo, D., Kono, R. T., Suwa, G.
(2008) Tomographic analysis of the Daka calvaria. Homo Erectus Pleistocene Evid. Middle Awash Ethiop. Univ. Calif. Press Berkeley Los Angel. 329–347.Google Scholar
Gil-da-Costa, R., Martin, A., Lopes, M. A., Munoz, M., Fritz, J. B., Braun, A. R.
(2006) Species-specific calls activate homologs of Broca’s and Wernicke’s areas in the macaque. Nat Neurosci 9, 1064–1070. CrossrefGoogle Scholar
Gong, T., Shuai, L., Zhang, M.
(2014) Modelling language evolution: Examples and predictions. Phys. Life Rev. 11, 280–302. CrossrefGoogle Scholar
Grabner, G., Janke, A. L., Budge, M. M., Smith, D., Pruessner, J., Collins, D. L.
(2006) Symmetric Atlasing and Model Based Segmentation: An Application to the Hippocampus in Older Adults, in: Larsen, R., Nielsen, M., Sporring, J. (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1–6, 2006. Proceedings, Part II. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 58–66.
Grodzinsky, Y.
(2000) The neurology of syntax: language use without Broca’s area. Behav. Brain Sci. 23, 1–21; discussion 21–71. CrossrefGoogle Scholar
Harmand, S., Lewis, J. E., Feibel, C. S., Lepre, C. J., Prat, S., Lenoble, A., Boës, X., Quinn, R. L., Brenet, M., Arroyo, A., Taylor, N., Clément, S., Daver, G., Brugal, J. -P., Leakey, L., Mortlock, R. A., Wright, J. D., Lokorodi, S., Kirwa, C., Kent, D. V., Roche, H.
(2015) 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315. Crossref[ p. 349 ]Google Scholar
Holloway, R. L.
(1983) Human paleontological evidence relevant to language behavior. Hum. Neurobiol. 2, 105–114.Google Scholar
(1980) Indonesian “Solo” (Ngandong) endocranial reconstructions: Some preliminary obserbations and comparisons with Neanderthal and Homo erectus groups. Am. J. Phys. Anthropol. 53, 285–295. CrossrefGoogle Scholar
(1976) Paleoneurological evidence for language origins. Ann. N. Y. Acad. Sci. 280, 330–348. CrossrefGoogle Scholar
Holloway, R. L., Broadfield, D. C., Yuan, M. S.
(2004) The Human Fossil Record, Volume 3. Brain Endocasts – The Paleoneurological Evidence, The Human Fossil Record. John Wiley & Sons, Hoboken. CrossrefGoogle Scholar
Humphrey, N.
(1984) The social function of intellect, in: Consciousness Regained. Oxford University Press, Oxford, pp. 14–28.Google Scholar
Isaac, G. L.
(1976) Stages of cultural elaboration in the pleistocene: Possible archaeological indicators of the development of language capabilities. Ann. N. Y. Acad. Sci. 280, 275–288. CrossrefGoogle Scholar
Jacob, F.
(1977) Evolution and tinkering. Science 196, 1161–1166. CrossrefGoogle Scholar
Jerison, H. J.
(1985) Animal intelligence as encephalization. Philos. Trans. R. Soc. Lond. Ser. B 308, 21–35. CrossrefGoogle Scholar
Keller, S. S., Roberts, N., Hopkins, W.
(2009) A comparative magnetic resonance imaging study of the anatomy, variability, and asymmetry of Broca’s area in the human and chimpanzee brain. J Neurosci 29, 14607–16. CrossrefGoogle Scholar
Lieberman, P.
(2000) Human language and our reptilian brain : the subcortical bases of speech, syntax, and thought, Perspectives in cognitive neuroscience. Harvard University Press, Cambridge, Mass.Google Scholar
Mars, R. B., Sallet, J., Neubert, F. -X., Rushworth, M. F.
(2013) Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proc. Natl. Acad. Sci. 110, 10806–10811. CrossrefGoogle Scholar
Mayr, E.
(1978) Evolution. Sci. Am. 239, 47–55. CrossrefGoogle Scholar
Miller, G. A., Gildea, P. M.
(1991) How children learn words, in: Wang, W. S. -Y. (Ed.), The Emergence of Language: Development and Evolution. W. H. Freeman, New York, pp. 150–158.Google Scholar
Morgan, T. J. H., Uomini, N. T., Rendell, L. E., Chouinard-Thuly, L., Street, S. E., Lewis, H. M., Cross, C. P., Evans, C., Kearney, R., de la Torre, I., Whiten, A., Laland, K. N.
(2015) Experimental evidence for the co-evolution of hominin tool-making teaching and language. Nat. Commun. 6, 6029. CrossrefGoogle Scholar
Nakajima, T., Hosaka, R., Tsuda, I., Tanji, J., Mushiake, H.
(2013) Two-Dimensional Representation of Action and Arm-Use Sequences in the Presupplementary and Supplementary Motor Areas. J. Neurosci. 33, 15533–15544. CrossrefGoogle Scholar
Petersson, K. -M., Folia, V., Hagoort, P.
(2012) What artificial grammar learning reveals about the neurobiology of syntax. Brain Lang. 120, 83–95. CrossrefGoogle Scholar
Petrides, M., Cadoret, G., Mackey, S.
(2005) Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature 435, 1235–8. Crossref[ p. 350 ]Google Scholar
Petrides, M., Pandya, D. N.
(2009) Distinct Parietal and Temporal Pathways to the Homologues of Broca’s Area in the Monkey. PLoS Biol. 7, e1000170. CrossrefGoogle Scholar
Picton, T. W.
(1992) The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 9, 456–479. CrossrefGoogle Scholar
Powell, A., Shennan, S., Thomas, M. G.
(2009) Late Pleistocene Demography and the Appearance of Modern Human Behavior. Science 324, 1298–1301. CrossrefGoogle Scholar
Powell, L. E., Isler, K., Barton, R. A.
(2017) Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci. 284, 20171765. CrossrefGoogle Scholar
Poza-Rey, E. M., Lozano, M., Arsuaga, J. L.
(2017) Brain asymmetries and handedness in the specimens from the Sima de los Huesos site (Atapuerca, Spain). Quat. Int. 433, 32–44. CrossrefGoogle Scholar
Putt, S. S., Wijeakumar, S., Franciscus, R. G., Spencer, J. P.
(2017) The functional brain networks that underlie Early Stone Age tool manufacture. Nat. Hum. Behav. CrossrefGoogle Scholar
Savage-Rumbaugh, E. S., Murphy, J., Sevcik, R. A., Brakke, K. E., Williams, S. L., Rumbaugh, D. M.
(1993) Language comprehension in ape and child. Monogr. Soc. Res. Child Dev. 58, 1–222. CrossrefGoogle Scholar
Schenker, N. M., Buxhoeveden, D. P., Blackmon, W. L., Amunts, K., Zilles, K., Semendeferi, K.
(2008) A Comparative Quantitative Analysis of Cytoarchitecture and Minicolumnar Organization in Broca’s Area in Humans and Great Apes. J. Comp. Neurol. 510, 117–128. CrossrefGoogle Scholar
Schenker, N. M., Hopkins, W. D., Spocter, M. A., Garrison, A. R., Stimpson, C. D., Erwin, J. M., Hof, P. R., Sherwood, C. C.
(2010) Broca’s area homologue in chimpanzees (Pan troglodytes): probabilistic mapping, asymmetry, and comparison to humans. Cereb. Cortex 20, 730–42. CrossrefGoogle Scholar
Schoenemann, P. T.
(2017) A complex-adaptive-systems approach to the evolution of language and the brain, in: Mufwene, S. S., Coupé, C., Pellegrino, F. (Eds.), Complexity in Language: Developmental and Evolutionary Perspectives, Cambridge Approaches to Language Contact. Cambridge University Press, pp. 67–100. CrossrefGoogle Scholar
(2013) Hominid Brain Evolution, in: Begun, D. R. (Ed.), A Companion to Paleoanthropology. Wiley-Blackwell, Chichester, UK, pp. 136–164. CrossrefGoogle Scholar
(2012) Evolution of brain and language, in: Hofman, M. A., Falk, D. (Eds.), Progress in Brain Research. Elsevier, Amsterdam: The Netherlands, pp. 443–459.Google Scholar
(1999) Syntax as an emergent characteristic of the evolution of semantic complexity. Minds Mach. 9, 309–346. CrossrefGoogle Scholar
Schoenemann, P. T., Holloway, R. L.
(2016) Brain function and Broca’s Cap: A meta-analysis of fMRI studies. Am. J. Phys. Anthropol. 159, 283.Google Scholar
Schoenemann, P. T., Sheehan, M. J., Glotzer, L. D.
(2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci. 8, 242–52. CrossrefGoogle Scholar
Semaw, S., Rogers, M. J., Quade, J., Renne, P. R., Butler, R. F., Dominguez-Rodrigo, M., Stout, D., Hart, W. S., Pickering, T., Simpson, S. W.
(2003) 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J Hum Evol 45, 169–77. CrossrefGoogle Scholar
Seyfarth, R. M., Cheney, D. L., Marler, P.
(1980) Monkey Responses to Three Different Alarm Calls: Evidence of Predator Classification and Semantic Communication. Science 210, 801–803. Crossref[ p. 351 ]Google Scholar
Smith, K., Kirby, S., Brighton, H.
(2003) Iterated learning: a framework for the emergence of language. Artif. Life 9, 371–86. CrossrefGoogle Scholar
Snowdon, C. T.
(1990) Language capacities of nonhuman animals. Yearb. Phys. Anthropol. 33, 215–243. CrossrefGoogle Scholar
Stephan, H., Frahm, H., Baron, G.
(1981) New and revised data on volumes of brain structures in Insectivores and Primates. Folia Primatol. (Basel) 35, 1–29. CrossrefGoogle Scholar
Stout, D., Chaminade, T.
(2012) Stone tools, language and the brain in human evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 75–87. CrossrefGoogle Scholar
Taglialatela, J. P., Russell, J. L., Schaeffer, J. A., Hopkins, W. D.
(2008) Communicative signaling activates “Broca’s” homolog in chimpanzees. Curr Biol 18, 343–8. CrossrefGoogle Scholar
Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., Farah, M. J.
(1997) Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U A 94, 14792–7. CrossrefGoogle Scholar
Toth, N., Schick, K.
(2009) The Importance of Actualistic Studies in Early Stone Age Research: Some Personal Reflections, in: Schick, K., Toth, N., Toth, N. (Eds.), The Cutting Edge: New Approaches to the Archaeology of Human Origins, Stone Age Institute Publication Series. Stone Age Institute Press, Gosport, IN, pp. 267–344.Google Scholar
Uylings, H. B. M., Van Eden, C. G.
(1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans, in: Uylings, H. B. M., Van Eden, C. G., De Bruin, J. P. C., Corner, M. A., Feenstra, M. G. P. (Eds.), Progress in Brain Research, Vol. 85, Progress in Brain Research. Elsevier Science Publishers, New York, pp. 31–62.Google Scholar
Wilkins, W. K., Wakefield, J.
(1995) Brains evolution and neurolinguistic preconditions. Behav. Brain Sci. 18, 161–182. CrossrefGoogle Scholar
Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., Thiele, A., Griffiths, T. D., Marslen-Wilson, W. D., Petkov, C. I.
(2015) Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nat. Commun. 6, 8901. CrossrefGoogle Scholar
Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen-Wilson, W. D., Smith, K., Petkov, C. I.
(2013) Auditory Artificial Grammar Learning in Macaque and Marmoset Monkeys. J. Neurosci. 33, 18825–18835. CrossrefGoogle Scholar
Wilson, S. M., Galantucci, S., Tartaglia, M. C., Rising, K., Patterson, D. K., Henry, M. L., Ogar, J. M., DeLeon, J., Miller, B. L., Gorno-Tempini, M. L.
(2011) Syntactic Processing Depends on Dorsal Language Tracts. Neuron 72, 397–403. CrossrefGoogle Scholar