Article published in:
Gaze in Human-Robot Communication
Edited by Frank Broz, Hagen Lehmann, Bilge Mutlu and Yukiko Nakano
[Benjamins Current Topics 81] 2015
► pp. 1332
Cited by

Cited by other publications

Bisio, Ambra, Alessandra Sciutti, Francesco Nori, Giorgio Metta, Luciano Fadiga, Giulio Sandini, Thierry Pozzo & Alessio Avenanti
2014. Motor Contagion during Human-Human and Human-Robot Interaction. PLoS ONE 9:8  pp. e106172 ff. Crossref logo

This list is based on CrossRef data as of 26 november 2020. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.

References

References

Ambrosini, E., Costantini, M., & Sinigaglia, C.
(2011a) Grasping with the eyes. Journal of Neurophysiology, 106, 1437–1442. CrossrefGoogle Scholar
Bartneck, C., Kulic, D., Croft, E., & Zoghbi, S.
(2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived safety of robots. International Journal of Social Robotics, 1, 71–81. CrossrefGoogle Scholar
Chaminade, T., & Cheng, G.
(2009) Social cognitive neuroscience and humanoid robotics. Journal of physiology, Paris, 103, 286–295. CrossrefGoogle Scholar
Chaminade, T., Franklin, D., Oztop, E., & Cheng, G.
(2005) Motor interference between humans and humanoid robots: Effect of biological and artifical motion. In International Conference on Development and Learning (pp. 96–101).
Chaminade, T., Zecca, M., Blakemore, S–J., Takanishi, A., Frith, C.D., Micera, S., Dario, P., Rizzolatti, G., Gallese, V., & Umiltà, M.A.
(2010) Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures. PLoS One, 5, e11577. CrossrefGoogle Scholar
Chartrand, T.L., & Bargh, J.A.
(1999) The chameleon effect: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893–910. CrossrefGoogle Scholar
Cross, E.S., Liepelt, R., de Chaf, Parkinson, J., Ramsey, R., Stadler, W., & Prinz, W.
(2011) Robotic movement preferentially engages the action observation network. Human Brain Mapping, 33, 2238–2254. CrossrefGoogle Scholar
Dehais, F., Sisbot, E.A., Alami, R., & Causse, M.
(2011) Physiological and subjective evaluation of a human-robot object hand-over task. Applied Ergonomics, 42(6), 785–791. CrossrefGoogle Scholar
Efron, B., & Tibshirani, R.J.
(1993) An introduction to the bootstrap. New York, NY: Chapman & Hall. CrossrefGoogle Scholar
Elsner, C., D’Ausilio, A., Gredebäck, G., Falck-Ytter, T., & Fadiga, L.
(2012) The motor cortex is causally related to predictive eye movements during action observation. Neuropsychologia, 51, 488–492. CrossrefGoogle Scholar
Eshuis, R., Coventry, K.R., & Vulchanova, M.
(2009) Predictive eye movements are driven by goals, not by the mirror neuron system. Psychological Science, 20, 438–40. CrossrefGoogle Scholar
Fabbri-Destro, M., & Rizzolatti, G.
(2008) Mirror neurons and mirror systems in monkeys and humans. Physiology (Bethesda), 23, 171–179. CrossrefGoogle Scholar
Falck-Ytter, T., Gredebaeck, G., & von Hofsten, C.
(2006) Infants predict other people’s action goals. Nature Neuroscience, 9, 878–879. CrossrefGoogle Scholar
Flanagan, J.R., & Johansson, R.S.
(2003) Action plans used in action observation. Nature, 424, 769–771. CrossrefGoogle Scholar
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G.
(1996) Action recognition in the premotor cortex. Brain, 119(Pt 2), 593–609. CrossrefGoogle Scholar
Gallese, V., Keysers, C., & Rizzolatti, G.
(2004) A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8, 396–403. CrossrefGoogle Scholar
Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C.
(2007) The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. Neuroimage, 35, 1674–1684. CrossrefGoogle Scholar
Gesierich, B., Bruzzo, A., Ottoboni, G., & Finos, L.
(2008) Human gaze behaviour during action execution and observation. Acta psychological, 128, 324–330. CrossrefGoogle Scholar
Gredebäck, G., & Kochukhova, O.
(2010) Goal anticipation during action observation is influenced by synonymous action capabilities, a puzzling developmental study. Experimental Brain Research, 202, 493–497. CrossrefGoogle Scholar
Gredebäck, G., & Melinder, A.
(2010) Infants’ understanding of everyday social interactions: A dual process account. Cognition, 114, 197–206. CrossrefGoogle Scholar
Gredebäck, G., Stasiewicz, D., Falck-Ytter, T., von Hofsten, C., & Rosander, K.
(2009) Action type and goal type modulate goal-directed gaze shifts in 14-month-old infants. Developmental Psychology, 45, 1190–1194. CrossrefGoogle Scholar
Helskinki
(1964 2008) World Medical Association, Declaration of Helsinki. Ethical principles for medical research involving human subjects. URL: http://​www​.wma​.net​/en​/30publications​/10policies​/b3/. Last accessed 24/4/2014.
Itakura, S., Ishida, H., Kanda, T., Shimada, Y., Ishiguro, H., & Lee, K.
(2008) How to build an intentional android: Infants’ imitation of a robot’s goal-directed actions. Infancy, 3, 519–532. CrossrefGoogle Scholar
Johansson, R.S., Westling, G., Bäckström, A., & Flanagan, J.R.
(2001) Eye-hand coordination in object manipulation. The Journal of Neuroscience, 21, 6917–6932.Google Scholar
Kamide, H., Mae, Y., Kawabe, K., Shigemi, S., & Arai, T.
(2012) A psychological scale for general impressions of humanoids. In IEEE International Conference on Robotics and Automation (ICRA, pp. 4030–4037).
Kanakogi, Y., & Itakura, S.
(2011) Developmental correspondence between action prediction and motor ability in early infancy. Nature Communications, 2, 341. CrossrefGoogle Scholar
Kilner, J.M., Paulignan, Y., & Blakemore, S.J.
(2003) An interference effect of observed biological movement on action. Current Biology, 13, 522–525. CrossrefGoogle Scholar
Kupferberg, A., Glasauer, S., Huber, M., Rickert, M., Knoll, A., & Brandt, T.
(2011) Biological movement increases acceptance of humanoid robots as human partners in motor interaction. AI & Society, 26, 339–345. CrossrefGoogle Scholar
Liepelt, R., Prinz, W., & Brass, M.
(2010) When do we simulate non-human agents? Dissociating communicative and non-communicative actions. Cognition, 115, 426–434. CrossrefGoogle Scholar
Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., von Hofsten, C., Rosander, K., Lopes, M., Santos-Victor, J., Bernardino, A., & Montesano, L.
(2010) The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural Networks, 23, 1125–1134. CrossrefGoogle Scholar
Moriguchi, Y., Minato, T., Ishiguro, H., Shinohara, I., & Itakura, S.
(2010) Cues that trigger social transmission of disinhibition in young children. Journal of Experimental Child Psychology, 107, 181–187. CrossrefGoogle Scholar
Nyström, P., Ljunghammar, T., Rosander, K., & von Hofsten, C.
(2011) Using mu rhythm desynchronization to measure mirror neuron activity in infants. Developmental Science, 14, 327–335. CrossrefGoogle Scholar
Oberman, L.M., McCleery, J.P., Ramachandran, V.S., & Pineda, J.A.
(2007a) EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots. Neurocomputing, 70, 2194–2203. CrossrefGoogle Scholar
Oberman, L.M., Pineda, J.A., & Ramachandran, V.S.
(2007b) The human mirror neuron system: A link between action observation and social skills. Social Cognitive and Affective Neuroscience, 2, 62–66. CrossrefGoogle Scholar
Oztop, E., Franklin, D., Chaminade, T., & Cheng, G.
(2005) Human-humanoid interaction: Is a humanoid robot perceived as a human? International Journal of Humanoid Robotics, 2, 537–559. CrossrefGoogle Scholar
Pattacini, U., Nori, F., Natale, L., Metta, G., & Sandini, G.
(2010) An experimental evaluation of a novel minimum-jerk cartesian controller for humanoid robots. IEEE International Conference on Intelligent Robots and Systems (pp. 1668–1674).
Perani, D., Fazio, F., Borghese, N.A., Tettamanti, M., Ferrari, S., Decety, J., & Gilardi, M.C.
(2001) Different brain correlates for watching real and virtual hand actions. Neuroimage, 14, 749–758. CrossrefGoogle Scholar
Pierno, A.C., Becchio C., Wall, M.B., Smith, A.T, Turella, L., & Castiello, U.
(2006) When gaze turns into grasp. Journal of Cognitive Neuroscience, 18(12), 2130–2137. CrossrefGoogle Scholar
Press, C., Bird, G., Flach, R., & Heyes, C.
(2005) Robotic movement elicits automatic imitation. Brain Research. Cognitive Brain Research, 25, 632–640. CrossrefGoogle Scholar
Press, C., Gillmeister, H., & Heyes, C.
(2007) Sensorimotor experience enhances automatic imitation of robotic action. Proceedings. Biological sciences, 274, 2509–2514. CrossrefGoogle Scholar
Rani, P., Sims, J., Brackin, R., & Sarkar, N.
(2002) Online stress detection using psychophysiological signal for implicit human-robot cooperation. Robotica, 20(6), 673–686. CrossrefGoogle Scholar
Rizzolatti, G., & Craighero, L.
(2004) The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. CrossrefGoogle Scholar
Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V.
(1999) Resonance behaviors and mirror neurons. Archives Italiennes de Biologie, 137, 85–100.Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L.
(1996) Premotor cortex and the recognition of motor actions. Brain Research. Cognitive Brain Research, 3, 131–141. CrossrefGoogle Scholar
Rizzolatti, G., Fogassi, L., & Gallese, V.
(2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670. CrossrefGoogle Scholar
Rizzolatti, G., & Sinigaglia, C.
(2010) The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264–274. CrossrefGoogle Scholar
Rosander, K., & von Hofsten, C.
(2011) Predictive gaze shifts elicited during observed and performed actions in 10-month-old infants and adults. Neuropsychologia, 49, 2911–2917. CrossrefGoogle Scholar
Sandini, G., Metta, G., & Vernon, D.
(2007) The iCub cognitive humanoid robot: An open-system research platform for enactive cognition. In 50 years of artificial intelligence (pp. 358–369). Springer Berlin: Heidelberg. CrossrefGoogle Scholar
Sciutti, A., Bisio, A., Nori, F., Metta, G., Fadiga, L., Pozzo, T., & Sandini, G.
(2012) Measuring human-robot interaction through motor resonance. International Journal of Social Robotics, 4(3), 223–234. CrossrefGoogle Scholar
Sciutti, A., Del Prete, A., Natale, L., Burr, D.C., Sandini, G., & Gori, M.
(2013) Perception during interaction is not based on statistical context. IEEE/ACM Proceedings of the Human Robot Interaction Conference 2013 . p. 225–226.
Senju, A, Southgate, V, White, S, & Frith, U.
(2009) Mindblind eyes: An absence of spontaneous theory of mind in Asperger syndrome. Science, 325, 883–885. CrossrefGoogle Scholar
Shimada, S.
(2010) Deactivation in the sensorimotor area during observation of a human agent performing robotic actions. Brain Cognitive, 72, 394–399. CrossrefGoogle Scholar
Southgate, V., Johnson, M.H., Osborne, T., & Csibra, G.
(2009) Predictive motor activation during action observation in human infants. Biology Letters, 5, 769–772. CrossrefGoogle Scholar
Stadler, W., Ott, D.V., Springer, A., Schubotz, R.I., Schutz-Bosbach, S., & Prinz, W.
(2012) Repetitive TMS suggests a role of the human dorsal premotor cortex in action prediction. Frontiers in Human Neuroscience, 6. CrossrefGoogle Scholar
Stadler, W., Schubotz, R.I., von Cramon, D.Y., Springer, A., Graf, M., & Prinz, W.
(2011) Predicting and memorizing observed action: Differential premotor cortex involvement. Human Brain Mapping, 32, 677–687. CrossrefGoogle Scholar
Tai, Y.F., Scherfler, C., Brooks, D.J., Sawamoto, N., & Castiello, U.
(2004) The human premotor cortex is ‘mirror’ only for biological actions. Current Biology, 14, 117–120. CrossrefGoogle Scholar
Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S.M.
(2010) Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20, 2511–2521. CrossrefGoogle Scholar
van Baaren, R.B., Holland, R.W., Steenaert, B., & van Knippenberg, A.
(2003) Mimicry for money: Behavioral consequences of imitation. Journal of Experimental Social Psychology, 39, 393–398. CrossrefGoogle Scholar
Wada, K., Shibata, T., Musha, T., & Kimura, S.
(2005) Effects of robot therapy for demented patients evaluated by EEG. In Proceedings IEEE/RSJ International Conference Intelligent Robots and Systems (IROS, pp.1552–1557).
Woodward, A.L.
(1998) Infants selectively encode the goal object of an actor’s reach. Cognition, 69, 1–34. CrossrefGoogle Scholar