Part of
Gaze in Human-Robot Communication
Edited by Frank Broz, Hagen Lehmann, Bilge Mutlu and Yukiko Nakano
[Benjamins Current Topics 81] 2015
► pp. 1332
References
Ambrosini, E., Costantini, M., & Sinigaglia, C
(2011a) Grasping with the eyes. Journal of Neurophysiology, 106, 1437–1442. DOI logoGoogle Scholar
Bartneck, C., Kulic, D., Croft, E., & Zoghbi, S
(2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived safety of robots. International Journal of Social Robotics, 1, 71–81. DOI logoGoogle Scholar
Chaminade, T., & Cheng, G
(2009) Social cognitive neuroscience and humanoid robotics. Journal of physiology, Paris, 103, 286–295. DOI logoGoogle Scholar
Chaminade, T., Franklin, D., Oztop, E., & Cheng, G
(2005) Motor interference between humans and humanoid robots: Effect of biological and artifical motion. In International Conference on Development and Learning (pp. 96–101).
Chaminade, T., Zecca, M., Blakemore, S–J., Takanishi, A., Frith, C.D., Micera, S., Dario, P., Rizzolatti, G., Gallese, V., & Umiltà, M.A
(2010) Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures. PLoS One, 5, e11577. DOI logoGoogle Scholar
Chartrand, T.L., & Bargh, J.A
(1999) The chameleon effect: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893–910. DOI logoGoogle Scholar
Cross, E.S., Liepelt, R., de Chaf, Parkinson, J., Ramsey, R., Stadler, W., & Prinz, W
(2011) Robotic movement preferentially engages the action observation network. Human Brain Mapping, 33, 2238–2254. DOI logoGoogle Scholar
Dehais, F., Sisbot, E.A., Alami, R., & Causse, M
(2011) Physiological and subjective evaluation of a human-robot object hand-over task. Applied Ergonomics, 42(6), 785–791. DOI logoGoogle Scholar
Efron, B., & Tibshirani, R.J
(1993) An introduction to the bootstrap. New York, NY: Chapman & Hall. DOI logoGoogle Scholar
Elsner, C., D’Ausilio, A., Gredebäck, G., Falck-Ytter, T., & Fadiga, L
(2012) The motor cortex is causally related to predictive eye movements during action observation. Neuropsychologia, 51, 488–492. DOI logoGoogle Scholar
Eshuis, R., Coventry, K.R., & Vulchanova, M
(2009) Predictive eye movements are driven by goals, not by the mirror neuron system. Psychological Science, 20, 438–40. DOI logoGoogle Scholar
Fabbri-Destro, M., & Rizzolatti, G
(2008) Mirror neurons and mirror systems in monkeys and humans. Physiology (Bethesda), 23, 171–179. DOI logoGoogle Scholar
Falck-Ytter, T., Gredebaeck, G., & von Hofsten, C
(2006) Infants predict other people’s action goals. Nature Neuroscience, 9, 878–879. DOI logoGoogle Scholar
Flanagan, J.R., & Johansson, R.S
(2003) Action plans used in action observation. Nature, 424, 769–771. DOI logoGoogle Scholar
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G
(1996) Action recognition in the premotor cortex. Brain, 119(Pt 2), 593–609. DOI logoGoogle Scholar
Gallese, V., Keysers, C., & Rizzolatti, G
(2004) A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8, 396–403. DOI logoGoogle Scholar
Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C
(2007) The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. Neuroimage, 35, 1674–1684. DOI logoGoogle Scholar
Gesierich, B., Bruzzo, A., Ottoboni, G., & Finos, L
(2008) Human gaze behaviour during action execution and observation. Acta psychological, 128, 324–330. DOI logoGoogle Scholar
Gredebäck, G., & Kochukhova, O
(2010) Goal anticipation during action observation is influenced by synonymous action capabilities, a puzzling developmental study. Experimental Brain Research, 202, 493–497. DOI logoGoogle Scholar
Gredebäck, G., & Melinder, A
(2010) Infants’ understanding of everyday social interactions: A dual process account. Cognition, 114, 197–206. DOI logoGoogle Scholar
Gredebäck, G., Stasiewicz, D., Falck-Ytter, T., von Hofsten, C., & Rosander, K
(2009) Action type and goal type modulate goal-directed gaze shifts in 14-month-old infants. Developmental Psychology, 45, 1190–1194. DOI logoGoogle Scholar
Helskinki
(1964 2008) World Medical Association, Declaration of Helsinki. Ethical principles for medical research involving human subjects. URL: [URL]. Last accessed 24/4/2014.
Itakura, S., Ishida, H., Kanda, T., Shimada, Y., Ishiguro, H., & Lee, K
(2008) How to build an intentional android: Infants’ imitation of a robot’s goal-directed actions. Infancy, 3, 519–532. DOI logoGoogle Scholar
Johansson, R.S., Westling, G., Bäckström, A., & Flanagan, J.R
(2001) Eye-hand coordination in object manipulation. The Journal of Neuroscience, 21, 6917–6932.Google Scholar
Kamide, H., Mae, Y., Kawabe, K., Shigemi, S., & Arai, T
(2012) A psychological scale for general impressions of humanoids. In IEEE International Conference on Robotics and Automation (ICRA, pp. 4030–4037).
Kanakogi, Y., & Itakura, S
(2011) Developmental correspondence between action prediction and motor ability in early infancy. Nature Communications, 2, 341. DOI logoGoogle Scholar
Kilner, J.M., Paulignan, Y., & Blakemore, S.J
(2003) An interference effect of observed biological movement on action. Current Biology, 13, 522–525. DOI logoGoogle Scholar
Kupferberg, A., Glasauer, S., Huber, M., Rickert, M., Knoll, A., & Brandt, T
(2011) Biological movement increases acceptance of humanoid robots as human partners in motor interaction. AI & Society, 26, 339–345. DOI logoGoogle Scholar
Liepelt, R., Prinz, W., & Brass, M
(2010) When do we simulate non-human agents? Dissociating communicative and non-communicative actions. Cognition, 115, 426–434. DOI logoGoogle Scholar
Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., von Hofsten, C., Rosander, K., Lopes, M., Santos-Victor, J., Bernardino, A., & Montesano, L
(2010) The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural Networks, 23, 1125–1134. DOI logoGoogle Scholar
Moriguchi, Y., Minato, T., Ishiguro, H., Shinohara, I., & Itakura, S
(2010) Cues that trigger social transmission of disinhibition in young children. Journal of Experimental Child Psychology, 107, 181–187. DOI logoGoogle Scholar
Nyström, P., Ljunghammar, T., Rosander, K., & von Hofsten, C
(2011) Using mu rhythm desynchronization to measure mirror neuron activity in infants. Developmental Science, 14, 327–335. DOI logoGoogle Scholar
Oberman, L.M., McCleery, J.P., Ramachandran, V.S., & Pineda, J.A
(2007a) EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots. Neurocomputing, 70, 2194–2203. DOI logoGoogle Scholar
Oberman, L.M., Pineda, J.A., & Ramachandran, V.S
(2007b) The human mirror neuron system: A link between action observation and social skills. Social Cognitive and Affective Neuroscience, 2, 62–66. DOI logoGoogle Scholar
Oztop, E., Franklin, D., Chaminade, T., & Cheng, G
(2005) Human-humanoid interaction: Is a humanoid robot perceived as a human? International Journal of Humanoid Robotics, 2, 537–559. DOI logoGoogle Scholar
Pattacini, U., Nori, F., Natale, L., Metta, G., & Sandini, G
(2010) An experimental evaluation of a novel minimum-jerk cartesian controller for humanoid robots. IEEE International Conference on Intelligent Robots and Systems (pp. 1668–1674).
Perani, D., Fazio, F., Borghese, N.A., Tettamanti, M., Ferrari, S., Decety, J., & Gilardi, M.C
(2001) Different brain correlates for watching real and virtual hand actions. Neuroimage, 14, 749–758. DOI logoGoogle Scholar
Pierno, A.C., Becchio C., Wall, M.B., Smith, A.T, Turella, L., & Castiello, U
(2006) When gaze turns into grasp. Journal of Cognitive Neuroscience, 18(12), 2130–2137. DOI logoGoogle Scholar
Press, C., Bird, G., Flach, R., & Heyes, C
(2005) Robotic movement elicits automatic imitation. Brain Research. Cognitive Brain Research, 25, 632–640. DOI logoGoogle Scholar
Press, C., Gillmeister, H., & Heyes, C
(2007) Sensorimotor experience enhances automatic imitation of robotic action. Proceedings. Biological sciences, 274, 2509–2514. DOI logoGoogle Scholar
Rani, P., Sims, J., Brackin, R., & Sarkar, N
(2002) Online stress detection using psychophysiological signal for implicit human-robot cooperation. Robotica, 20(6), 673–686. DOI logoGoogle Scholar
Rizzolatti, G., & Craighero, L
(2004) The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. DOI logoGoogle Scholar
Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V
(1999) Resonance behaviors and mirror neurons. Archives Italiennes de Biologie, 137, 85–100.Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L
(1996) Premotor cortex and the recognition of motor actions. Brain Research. Cognitive Brain Research, 3, 131–141. DOI logoGoogle Scholar
Rizzolatti, G., Fogassi, L., & Gallese, V
(2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670. DOI logoGoogle Scholar
Rizzolatti, G., & Sinigaglia, C
(2010) The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264–274. DOI logoGoogle Scholar
Rosander, K., & von Hofsten, C
(2011) Predictive gaze shifts elicited during observed and performed actions in 10-month-old infants and adults. Neuropsychologia, 49, 2911–2917. DOI logoGoogle Scholar
Sandini, G., Metta, G., & Vernon, D
(2007) The iCub cognitive humanoid robot: An open-system research platform for enactive cognition. In 50 years of artificial intelligence (pp. 358–369). Springer Berlin: Heidelberg. DOI logoGoogle Scholar
Sciutti, A., Bisio, A., Nori, F., Metta, G., Fadiga, L., Pozzo, T., & Sandini, G
(2012) Measuring human-robot interaction through motor resonance. International Journal of Social Robotics, 4(3), 223–234. DOI logoGoogle Scholar
Sciutti, A., Del Prete, A., Natale, L., Burr, D.C., Sandini, G., & Gori, M
(2013) Perception during interaction is not based on statistical context. IEEE/ACM Proceedings of the Human Robot Interaction Conference 2013 . p. 225–226.
Senju, A, Southgate, V, White, S, & Frith, U
(2009) Mindblind eyes: An absence of spontaneous theory of mind in Asperger syndrome. Science, 325, 883–885. DOI logoGoogle Scholar
Shimada, S
(2010) Deactivation in the sensorimotor area during observation of a human agent performing robotic actions. Brain Cognitive, 72, 394–399. DOI logoGoogle Scholar
Southgate, V., Johnson, M.H., Osborne, T., & Csibra, G
(2009) Predictive motor activation during action observation in human infants. Biology Letters, 5, 769–772. DOI logoGoogle Scholar
Stadler, W., Ott, D.V., Springer, A., Schubotz, R.I., Schutz-Bosbach, S., & Prinz, W
(2012) Repetitive TMS suggests a role of the human dorsal premotor cortex in action prediction. Frontiers in Human Neuroscience, 6. DOI logoGoogle Scholar
Stadler, W., Schubotz, R.I., von Cramon, D.Y., Springer, A., Graf, M., & Prinz, W
(2011) Predicting and memorizing observed action: Differential premotor cortex involvement. Human Brain Mapping, 32, 677–687. DOI logoGoogle Scholar
Tai, Y.F., Scherfler, C., Brooks, D.J., Sawamoto, N., & Castiello, U
(2004) The human premotor cortex is ‘mirror’ only for biological actions. Current Biology, 14, 117–120. DOI logoGoogle Scholar
Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S.M
(2010) Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20, 2511–2521. DOI logoGoogle Scholar
van Baaren, R.B., Holland, R.W., Steenaert, B., & van Knippenberg, A
(2003) Mimicry for money: Behavioral consequences of imitation. Journal of Experimental Social Psychology, 39, 393–398. DOI logoGoogle Scholar
Wada, K., Shibata, T., Musha, T., & Kimura, S
(2005) Effects of robot therapy for demented patients evaluated by EEG. In Proceedings IEEE/RSJ International Conference Intelligent Robots and Systems (IROS, pp.1552–1557).
Woodward, A.L
(1998) Infants selectively encode the goal object of an actor’s reach. Cognition, 69, 1–34. DOI logoGoogle Scholar
Cited by

Cited by 1 other publications

Bisio, Ambra, Alessandra Sciutti, Francesco Nori, Giorgio Metta, Luciano Fadiga, Giulio Sandini, Thierry Pozzo & Alessio Avenanti
2014. Motor Contagion during Human-Human and Human-Robot Interaction. PLoS ONE 9:8  pp. e106172 ff. DOI logo

This list is based on CrossRef data as of 21 march 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.