Chapter published in:
Constructicography: Constructicon development across languages
Edited by Benjamin Lyngfelt, Lars Borin, Kyoko Ohara and Tiago Timponi Torrent
[Constructional Approaches to Language 22] 2018
► pp. 229254
References

References

Abney, S.
(2011) Data-intensive experimental linguistics. Linguistic Issues in Language Technology 6.Google Scholar
Angelov, K., & Ranta, A.
(2009) Implementing controlled languages in GF. In N. E. Fuchs (Ed.), Controlled natural language (pp.82–101). Berlin: Springer.Google Scholar
Bäckström, L., Borin, L., Forsberg, M., Lyngfelt, B., Prentice, J., & Sköldberg, E.
(2013) Automatic identification of construction candidates for a Swedish constructicon. In Proceedings of the workshop on lexical semantic resources for NLP at NODALIDA 2013 (pp.2–11). Oslo: NEALT.Google Scholar
Bender, E.
(2011) On achieving and evaluating language-independence in NLP. Linguistic Issues in Language Technology 6.Google Scholar
Bergen, B. K., & Chang, N.
(2005) Embodied Construction Grammar in simulation-based language understanding. In J. -O. Östman & M. Fried (Eds.), Construction grammars: Cognitive grounding and thoretical extentions (pp.147–190). Amsterdam: John Benjamins. CrossrefGoogle Scholar
(2013) Embodied Construction Grammar. In T. Hoffman & G. Trousdale (Eds.), The Oxford handbook of construction grammar (pp.168–190). Oxford: Oxford University Press.Google Scholar
Biber, D., & Conrad, S.
(1999) Lexical bundles in conversation and academic prose. In H. Hasselgard & S. Oksefjell (Eds.), Out of corpora: Studies in honor of Stig Johansson (pp.181–189). Amsterdam: Rodopi.Google Scholar
Bollmann, M.
(2013) POS Tagging for historical texts with sparse training data. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse (pp.11–18). Sofia: ACL.Google Scholar
Borin, L.
(2010) Med Zipf mot framtiden – en integrerad lexikonresurs för svensk språkteknologi [With Zipf into the future – an integrated lexical resource for Swedish language technology]. LexicoNordica 17, 35–54.Google Scholar
(2012) Core vocabulary: A useful but mystical concept in some kinds of linguistics. In D. Santos, K. Lindén, & W. Ng’ang’a (Eds.), Shall we play the Festschrift game? Essays on the occasion of Lauri Carlson’s 60th birthday (pp.53–65). Berlin: Springer. CrossrefGoogle Scholar
Borin, L., Dannélls, D., Forsberg, M., Gronostaj, M. T., & Kokkinakis, D.
(2010a) The past meets the present in Swedish FrameNet ++. In 14th EURALEX International Congress (pp.269–281). Leeuwarden: EURALEX.Google Scholar
Borin, L., & Forsberg, M.
(2009) All in the family: A comparison of SALDO and WordNet. In Proceedings of the Nodalida 2009 Workshop on WordNets and other Lexical Semantic Resources – between Lexical Semantics, Lexicography, Terminology and Formal Ontologies (pp.7–12). Odense. NEALT.Google Scholar
(2011) A diachronic computational lexical resource for 800 years of Swedish. In C. Sporleder, A. Van Den Bosch, & K. Zervanou (Eds.), Language technology for cultural heritage (pp.41–61). Berlin: Springer. CrossrefGoogle Scholar
Borin, L., Forsberg, M., & Kokkinakis, D.
(2010b) Diabase: Towards a diachronic BLARK in support of historical studies. In Proceedings of LREC 2010 (pp.35–42). Valletta: LREC.Google Scholar
Borin, L., Forsberg, M., & Lönngren, L.
(2013) SALDO: a touch of yin to WordNet’s yang. Language Resources and Evaluation 47(4), 1191–1211. CrossrefGoogle Scholar
Borin, L., Forsberg, M., & Lyngfelt, B.
(2013) Close encounters of the fifth kind: Some linguistic and computational aspects of the Swedish FrameNet ++ project. Veredas 17(1), 28–43. DOICrossrefGoogle Scholar
Borin, L., Forsberg, M., Olsson, L. -J., & Uppström, J.
(2012) The open lexical infrastructure of Språkbanken. In Proceedings of LREC 2012 (pp.3598–3602). Istanbul. ELRA.Google Scholar
Borin, L., Forsberg, M., & Roxendal, J.
(2012) Korp – the corpus infrastructure of Språkbanken. In Proceedings of LREC 2012 (pp.474–478). Istanbul. ELRA.Google Scholar
Briscoe, T., Carroll, J., & Watson, R.
(2006) The second release of the RASP system. In Proceedings of the COLING/ACL 2006 interactive presentation sessions (pp.77–80). Sydney: ACL. CrossrefGoogle Scholar
Bryant, J. E.
(2008) Best-fit constructional analysis. UC Berkeley PhD dissertation.Google Scholar
Chang, N.
(2008) Constructing grammar: A computational model of the emergence of early constructions. UC Berkeley PhD dissertation.Google Scholar
Chang, N., & Maia, T.
(2001) Learning grammatical constructions. In J. D. Moore & K. Stenning (Eds.), Proceedings of the twenty-third annual conference of the Cognitive Science Society (pp.176–181). Mahwah: Lawrence Erlbaum.Google Scholar
Copestake, A.
(2002) Implementing typed feature structure grammars. Stanford: CSLI Publications.Google Scholar
Croft, W. A.
(2001) Radical construction grammar: Syntactic theory in typological perspective. Oxford: Oxford University Press. CrossrefGoogle Scholar
Dannélls, D., Friberg Heppin, K., & Ehrlemark, A.
(2014) Using language technology resources and tools to construct Swedish FrameNet. In Proceedings of the workshop on lexical and grammatical resources for language processing (pp.8–17). Dublin: ACL. CrossrefGoogle Scholar
Fellbaum, C.
(Ed.). (1998)  WordNet: An electronic lexical database. Cambridge, Mass.: MIT Press.Google Scholar
Forsberg, M., Johansson, R., Bäckström, L., Borin, L., Lyngfelt, B., Olofsson, J., & Prentice, J.
(2014) From construction candidates to constructicon entries: An experiment using semi-automatic methods for identifying constructions in corpora. Constructions and Frames 6(1), 114–135. CrossrefGoogle Scholar
Francopoulo, G.
(Ed.) (2013) LMF: Lexical markup framework. London/Hoboken, NJ: ISTE/Wiley. CrossrefGoogle Scholar
Goldberg, A.
(1995) Constructions: A construction grammar approach to argument structure. Chicago: Chicago University Press.Google Scholar
Grūzītis, N., & Dannélls, D.
(2017) A multilingual FrameNet-based grammar and lexicon for controlled natural language. Language Resources and Evaluation 51(1), 37–66.CrossrefGoogle Scholar
Grūzītis, N., Dannélls, D., Lyngfelt, B., & Ranta, A.
(2015) Formalising the Swedish Constructicon in Grammatical Framework. In Proceedings of the grammar engineering across frameworks (GEAF) workshop (pp.49–56). Beijing: ACL. CrossrefGoogle Scholar
Gustafson-Čapková, S., & Hartmann, B.
(2006) Manual of the Stockholm Umeå Corpus version 2.0. Stockholm University.Google Scholar
Halácsy, P., Kornai, A., & Oravecz, C.
(2007) HunPos – an open source trigram tagger. In Proceedings of the 45th annual meeting of the Association for Computational Linguistics companion volume: Proceedings of the demo and poster sessions (pp.209–212). Prague: ACL.Google Scholar
ISO
(2008) Language resource management–Lexical markup framework (LMF). International Standard ISO 24613.Google Scholar
Johansson, R.
(2014) Automatic expansion of the Swedish FrameNet lexicon: Comparing and combining lexicon-based and corpus-based methods. Constructions and Frames 6(1), 92–113. CrossrefGoogle Scholar
Liberman, M.
(2009) The annotation conundrum. In Proceedings of the EACL 2009 workshop on the interaction between linguistics and computational linguistics: Virtuous, vicious or vacuous? (p.2). Athens: ACL. CrossrefGoogle Scholar
Lyngfelt, B., Bäckström, L., Borin, L., Ehrlemark, A., & Rydstedt R.
this volume). Constructicography at work: Theory meets practice in the Swedish Constructicon.
Lyngfelt, B., Borin, L., Forsberg, M., Prentice, J., Rydstedt, R., Sköldberg, E., & Tingsell, S.
(2012) Adding a constructicon to the Swedish resource network of Språkbanken. In Proceedings of KONVENS 2012 (LexSem 2012 workshop) (pp.452–461). Vienna: ÖGAI.Google Scholar
Manning, C. D.
(2015) Last words: Computational linguistics and deep learning. Computational Linguistics 41(4), 701–707. CrossrefGoogle Scholar
Moon, R.
(2000) Lexicography and disambiguation: The size of the problem. Computers and the Humanities 34(1–2), 99–102. CrossrefGoogle Scholar
Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryiğit, G., Kübler, S., Marinov, S., & Marsi, E.
(2007) MaltParser: A language-independent system for data-driven dependency parsing. Natural Language Engineering 13(2), 95–135.Google Scholar
Nivre, J., Megyesi, B., Gustafson-Čapková, S., Salomonsson, F., & Dahlqvist, B.
(2008) Cultivating a Swedish treebank. In J. Nivre, M. Dahllöf & B. Megyesi (Eds.), Resourceful language technology: Festschrift in honor of Anna Sågvall Hein (pp.111–120). Acta Universitatis Upsaliensis: Studia Linguistica Upsaliensia 7.Google Scholar
Pecina, P.
(2010) Lexical association measures and collocation extraction. Language Resources and Evaluation 44(1–2), 137–158. CrossrefGoogle Scholar
Peldszus, A., & Stede, M.
(2013) Ranking the annotators: An agreement study on argumentation structure. In Proceedings of the 7th linguistic annotation workshop and interoperability with discourse (pp.196–204). Sofia: ACL.Google Scholar
Pullum, G.
(2007) Ungrammaticality, rarity, and corpus use. Corpus Linguistics and Linguistic Theory 3(1), 33–47. CrossrefGoogle Scholar
(2009) Computational linguistics and generative linguistics: The triumph of hope over experience. In Proceedings of the EACL 2009 workshop on the interaction between linguistics and computational linguistics: Virtuous, vicious or vacuous? (pp.12–21). Athens: ACL. CrossrefGoogle Scholar
Ranta, A.
(2004) Grammatical Framework, a type-theoretical grammar formalism. Journal of Functional Programming 14(2), 145–189. CrossrefGoogle Scholar
(2009) The GF Resource Grammar Library. Linguistic Issues in Language Technology (LiLT) 2(2).Google Scholar
Reiter, E.
(2007) The shrinking horizons of computational linguistics. Computational Linguistics 33(2), 283–287. CrossrefGoogle Scholar
Schmid, H. -J.
(2010) Entrenchment, salience, and basic levels. In D. Geeraerts & H. Cuyckens (Eds.), The Oxford handbook of cognitive linguistics (pp.117–138). Oxford: Oxford University Press.Google Scholar
Schneider, N.
(2010) Computational cognitive morphosemantics: Modeling morphological compositionality in Hebrew verbs with embodied construction grammar. In N. Rolle, J. Steman, & J. Sylak-Glassman (Eds.), Proceedings of the thirty-sixth annual meeting of the Berkeley Linguistics Society (pp.353–368). Berkeley: BLS.Google Scholar
Trosterud, T.
(2006) Grammatically based language technology for minority languages. In A. Saxena & L. Borin (Eds.), Lesser-known languages of South Asia: Status and policies, case studies and applications of information technology (pp.293–315). Berlin: Mouton de Gruyter.Google Scholar
Tyers, F., & Pirinen, T. A.
(2016) Intermediate representation in rule-based machine translation for the Uralic languages. In Proceedings of the second international workshop on computational linguistics for the Uralic languages (pp.92–104). Szeged: University of Szeged.Google Scholar
Wible, D., & Tsao, N. -L.
(2010) StringNet as a computational resource for discovering and investigating linguistic constructions. In Proceedings of the NAACL HLT workshop on extracting and using constructions in computational linguistics (pp.25–31). Los Angeles: ACL.Google Scholar
Wintner, S.
(2009) What science underlies natural language engineering? Computational Linguistics 35(4), 641–644. CrossrefGoogle Scholar
Wray, A.
(2002) Formulaic language and the lexicon. Cambridge: Cambridge University Press. CrossrefGoogle Scholar
Cited by

Cited by 1 other publications

Ranta, Aarne, Krasimir Angelov, Normunds Gruzitis & Prasanth Kolachina
2020. Abstract Syntax as Interlingua: Scaling Up the Grammatical Framework from Controlled Languages to Robust Pipelines. Computational Linguistics 46:2  pp. 425 ff. Crossref logo

This list is based on CrossRef data as of 08 may 2021. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.