Part of
Language and Text: Data, models, information and applications
Edited by Adam Pawłowski, Jan Mačutek, Sheila Embleton and George Mikros
[Current Issues in Linguistic Theory 356] 2021
► pp. 209224
References
Allinson, Nigel, Hujun Yin, Lesley Allinson & Jon Slack
(eds.) 2001Advances in self-organising maps. Berlin: Springer. DOI logoGoogle Scholar
Bertuglia, Cristoforo & Franco Vaio
2005Nonlinearity, chaos, and complexity: The dynamics of natural and social systems. Oxford: Oxford University Press.Google Scholar
Deza, Michel & Elena Deza
2009Encyclopedia of distances. Berlin: Springer. DOI logoGoogle Scholar
Haykin, Simon
1999Neural networks. A comprehensive foundation. Upper Saddle River, NJ: Prentice Hall International.Google Scholar
Hubel, David & Torsten Wiesel
2005Brain and visual perception: The story of a 25-year collaboration. Oxford: Oxford University Press.Google Scholar
Izenman, Alan
2008Modern multivariate statistical techniques. Regression, classification, and manifold learning. Berlin: Springer.Google Scholar
Kaski, Samuel
1997Data exploration using Self-Organizing Maps. Helsinki: Helsinki University of Technology PhD thesis.Google Scholar
Kohonen, Teuvo
2001Self-Organizing Maps (3rd edn.). Berlin: Springer. DOI logoGoogle Scholar
Lay, David
2010Linear algebra and its applications (4th edn.). London: Pearson Education International.Google Scholar
Lee, John
2010Introduction to topological manifolds (2nd edn.). Berlin: Springer.Google Scholar
Lee, John & Michel Verleysen
2007Nonlinear dimensionality reduction. Berlin: Springer. DOI logoGoogle Scholar
Moisl, Hermann
2015Cluster analysis for corpus linguistics. Berlin: de Gruyter. DOI logoGoogle Scholar
Munkres, James
2000Topology (2nd edn.). London: Pearson Education International.Google Scholar
Oja, Erkki & Samuel Kaski
1999Kohonen maps. Amsterdam: Elsevier.Google Scholar
Reid, Miles & Balasz Szendroi
2005Geometry and toplogy. Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Ritter, Helge, Thomas Martinetz & Klaus Schulten
1992Neural computation and Self-Organizing Maps. Boston: Addison-Wesley.Google Scholar
Strogatz, Steven
2000Nonlinear dynamics and chaos: With applications to physics, biology, chemistry and engineering. New York: Perseus Books.Google Scholar
Sutherland, Wilson
2009Introduction to metric and topological spaces (2nd edn.). Oxford: Oxford University Press.Google Scholar
Ultsch, Alfred
2003U∗-Matrix: a tool to visualize cluster in high-dimensional data. Technical report 36. Marburg: Department of Computer Science, University of Marburg.Google Scholar
Ultsch, Alfred & Peter Siemon
1990Kohonen’s self-organizing feature maps for exploratory data analysis. Proceedings of the International Neural Network Conference, INNC ’90, 305–308. Paris: Springer.Google Scholar
Van Hulle, Marc
2000Faithful representations and topographic maps. Hoboken, NJ: John Wiley and Sons.Google Scholar
Verleysen, Michel
2003Learning high-dimensional data. In Sergey Ablameyko, Marco Gori, Liviu Goras & Vincenzo Piuri (eds.) Limitations and future trends in neural computation, 141–162. Amsterdam: IOS Press.Google Scholar
Vesanto, Juha & Esa Alhoniemi
2000Clustering of the Self-Organizing Map. IEEE Transactions on Neural Networks 11. 586–600. DOI logoGoogle Scholar
Xu, Rui & Don Wunsch
2008Clustering. Hoboken NJ: Wiley. DOI logoGoogle Scholar