The opt out paradigm
First steps towards a new experimental method that measures meta-linguistic awareness
Sybren Spit | University of Amsterdam
Sible Andringa | University of Amsterdam
Judith Rispens | University of Amsterdam
Enoch O. Aboh | University of Amsterdam
A common assumption is that children learn a language implicitly and without conscious awareness of form and grammar, but this assumption has virtually never been tested experimentally. We propose a novel experimental method to examine if children’s ability to acquire linguistic regularities relates to awareness of these regularities. Traditional methods investigating awareness often rely on learners’ abilities to verbalize their awareness. For young children, such methods are not adequate because they often cannot reflect explicitly on their acquired knowledge, although they might be aware of it in a way they cannot verbalize. To test this, we adapted a method that is used to investigate awareness in animals, because it does not rely on verbalization for demonstrating awareness. Pilot results with 26 adults and 48 kindergartners show some important procedural prerequisites are met. In future research, this procedure could be used to investigate the development of meta-linguistic awareness in children.
Keywords: meta-linguistic awareness, opt out paradigm, implicit learning, measuring awareness
Available under the Creative Commons Attribution (CC BY) 4.0 license.
For any use beyond this license, please contact the publisher at rights@benjamins.nl.
Published online: 19 April 2019
https://doi.org/10.1075/dujal.17027.spi
https://doi.org/10.1075/dujal.17027.spi
Full-text
References
References
Aissen, J.
Allport, A.
Andringa, S. & Curcic, M.
Andringa, S., & Rebuschat, P.
Aslin, R. N., Saffran, J. R., & Newport, E. L.
Barac, R., & Bialystok, E.
Bates, D., Maechler, M., Bolker, B., & Walker, S.
Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A.
Bertels, J., Boursain, E., Destrebecqz, A., & Gaillard, V.
Bialystok, E.
Bosch, L. & Sebastián-Gallés, N.
Cleeremans, A.
De Graaff, R.
DeKeyser, R.
De Waal, F.
Eigsti, I.-M., Zayas, V., Mischel, W., Shoda, Y., Ayduk, O., Dadlani, M. B., Davidson, M. C., Lawrence Aber, J., & Casey, M. C.
Ellis, N. C.
Endress, A. D., & Bonatti, L. L.
Erickson, L. C., & Thiessen, E. D.
Evans, J. L., Saffran, J. R., & Robe-Torres, K.
Frederick, S.
Hsu, H. J., Tomblin, J. B., & Christiansen, M. H.
Hulstijn, J.
Krashen, S. D.
Lichtman, K.
Lum, J. A. G., Conti-Ramsden, G., Page, D., & Ullman, M. T.
Mischel, W., Shoda, Y., & Rodriguez, M. L.
Misyak, J. B. & Christiansen, M. H.
Misyak, J. B., Christiansen, M. H., & Tomblin, J. B.
Packard, M. R.
Psychology Software Tools, Inc.
Radford, A.
R Core Team
(2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved from https://www.R-project.org/
Rebuschat, P.
Saffran, J. R., Johnson, E. K., & Aslin, R. N.
Schmidt, R. W.
Timmermans, B. & Cleeremans, A.
Tomasello, M.
Ullman, M.
Ullman, M., & Pierpont, E.
Vouloumanos, A.
West, G., Vadillo, M. A., Shanks, D. R., & Hulme, C.
Cited by
Cited by 1 other publications
Spit, Sybren, Sible Andringa, Judith Rispens & Enoch O. Aboh
This list is based on CrossRef data as of 08 february 2021. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.