Article published In:
International Journal of Corpus Linguistics
Vol. 23:1 (2018) ► pp.2854
Berzak, Y., Huang, Y., Barbu, A., Korhonen, A., & Katz, B.
(2016a) Anchoring and agreement in syntactic annotations. In J. Su (Ed.), Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (pp. 2215–2224). Austin, TX: ACL. DOI logoGoogle Scholar
Berzak, Y., Kenney, J., Spadine, C., Wang, J. X., Lam, L., Mori, K. S., Garza, S., & Katz, B.
(2016b) Universal dependencies for learner English. In K. Erk & N. A. Smith (Eds.), Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 737–746). Berlin: ACL. DOI logoGoogle Scholar
Buchholz, S., & Marsi, E.
(2006) CoNLL-X shared task on multilingual dependency parsing. In L. Marquez & D. Klein (Eds.), Proceedings of the Tenth Conference on Computational Natural Language Learning (pp. 149–164). New York, NY: ACL. DOI logoGoogle Scholar
Cer, D. M., De Marneffe, M. -C., Jurafsky, D., & Manning, C. D.
(2010) Parsing to Stanford dependencies: Trade-offs between speed and accuracy. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner & D. Tapias (Eds.), Proceedings of the Seventh International Conference on Language Resources and Evaluation (pp. 1628–1632). Valletta: ELRA.Google Scholar
Charniak, E., & Johnson, M.
(2005) Coarse-to-fine n-best parsing and MaxEnt discriminative reranking. In K. Knight (Ed.), Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (pp. 173–180). Stroudsburg: ACL.Google Scholar
Council of Europe
(2001) Common European Framework of Reference for Languages: Learning, Teaching, Assessment. Cambridge: Cambridge University Press.Google Scholar
De Marneffe, M. -C., MacCartney, B., & Manning, C. D.
(2006) Generating typed dependency parses from phrase structure parses. In N. Calzolari, K. Choukri, A. Gangemi, B. Maegaard, J. Mariani, J. Odijk & D. Tapias (Eds.), Proceedings of the Fifth International Conference on Language Resources and Evaluation (pp. 449–454). Genoa: ELRA.Google Scholar
De Marneffe, M. -C., & Manning, C. D.
(2008) Stanford typed dependencies manual (Technical Report). Retrieved from [URL] (last accessed February 2018).
Dickinson, M., & Lee, C. M.
(2013) Modifying corpus annotation to support the analysis of learner language. CALICO Journal, 26(3), 545–561. DOI logoGoogle Scholar
Dickinson, M., & Ragheb, M.
(2009) Dependency annotation for learner corpora. In M. Passarotti, A. Przepiorkowski, S. Raynaud & F. Van Eynde (Eds.), Proceedings of the Eighth Workshop on Treebanks and Linguistic Theories (pp. 59–70). Milan: EDUCatt.Google Scholar
Geertzen, J., Alexopoulou, T., & Korhonen, A.
(2013) Automatic linguistic annotation of large scale L2 databases: The EF-Cambridge Open Language Database (EFCAMDAT). In R. T. Miller, K. I. Martin, C. M. Eddington, A. Henery, N. M. Miguel, A. Tseng, A. Tuninetti & D. Walter (Eds.), Proceedings of the 31st Second Language Research Forum: Building Bridges Between Disciplines. Somerville: Cascadilla Proceedings Project.Google Scholar
Granger, S., Dagneaux, E., Meunier, F., & Paquot, M.
(2009) The International Corpus of Learner English. Version 2. Handbook and CD-ROM. Louvain-la-Neuve: Presses Universitaires de Louvain.Google Scholar
James, C.
(2013) Errors in Language Learning and Use: Exploring Error Analysis. New York, NY: Addison Wesley Longman. DOI logoGoogle Scholar
Klein, D., & Manning, C. D.
(2003a) Accurate unlexicalized parsing. In E. W. Hinrichs & D. Roth (Eds.), Proceedings of the 41st Annual Meeting on Association for Computational Linguistics-Volume 1 (pp. 423–430). Sapporo: ACL.Google Scholar
(2003b) Fast exact inference with a factored model for natural language parsing. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in Neural Information Processing Systems 15 (pp. 3–10). Cambridge, MA: MIT Press.Google Scholar
Kong, L., & Smith, N. A.
(2014) An empirical comparison of parsing methods for stanford dependencies (arXiv preprint). Retrieved from [URL] (last accessed February 2018).
Korhonen, A.
(2002) Semantically motivated subcategorization acquisition. In J. Pentheroudakis, N. Calzolari & A. Wu (Eds.), Proceedings of the ACL-02 Workshop on Unsupervised Lexical Acquisition-Volume 9 (pp. 51–58). Philadelphia, PA: ACL. DOI logoGoogle Scholar
Krivanek, J., & Meurers, D.
(2011) Comparing rule-based and data-driven dependency parsing of learner language. In K. Gerdes, E. Hajičová & L. Wanner (Eds.), Proceedings of the First International Conference on Dependency Linguistics (Depling 2011) (pp. 310–317). Barcelona: IOS Press.Google Scholar
Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B.
(1993) Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 19(2), 313–330.Google Scholar
Martins, A. F. T., Almeida, M., & Smith, N. A.
(2013) Turning on the Turbo: Fast third-order non-projective Turbo parsers. In H. Schuetze (Ed.), Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL) (pp. 617–622). Sofia: ACL.Google Scholar
Nicholls, D.
(2003) The Cambridge Learner Corpus: Error coding and analysis for lexicography and ELT. In A. Dawn, P. Rayson, A. Wilson & T. McEnery (Eds.), Proceedings of the Corpus Linguistics 2003 Conference (pp. 572–581). Lancaster: UCREL.Google Scholar
Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., & Marsi, E.
(2007) MaltParser: A language-independent system for data-driven dependency parsing. Natural Language Engineering, 13(2), 95–135. DOI logoGoogle Scholar
Ott, N., & Ziai, R.
(2010) Evaluating dependency parsing performance on German learner language. In M. Dickinson, K. Müürisep & M. Passarotti (Eds.), Proceedings of the Ninth International Workshop on Treebanks and Linguistic Theories (pp. 175–186). Tartu: NEALT.Google Scholar
Paquot, M., & Plonsky, L.
(2017) Quantitative research methods and study quality in learner corpus research. International Journal of Learner Corpus Research, 3(1), 61–94. DOI logoGoogle Scholar
Petrov, S., & Klein, D.
(2007) Improved inference for unlexicalized parsing. In B. Carpenter, A. Stent & J. D. Williams (Eds.), Proceedings of Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL) (pp. 404–411). Rochester: ACL.Google Scholar
Ragheb, M., & Dickinson, M.
(2011) Avoiding the comparative fallacy in the annotation of learner corpora. In G. Granena, J. Koeth, S. Lee-Ellis, A. Lukyanchenko, G. P. Botana & E. Rhoades (Eds.), Selected Proceedings of the 2010 Second Language Research Forum: Reconsidering SLA Research, Dimensions, and Directions (pp. 114–124). Somerville, MA: Cascadilla Proceedings Project.Google Scholar
(2013) Inter-annotator agreement for dependency annotation of learner language. In J. Tetreault, J. Burstein & C. Leacock (Eds.), Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications (pp. 169–179). Atlanta, GA: ACL.Google Scholar
Rankin, T.
(2015) Review of Clausal Complements in Native and Learner English: A Corpus-Based Study with LINDSEI and VICOLSE . International Journal of Learner Corpus Research, 1(2), 279–283. DOI logoGoogle Scholar
Rosen, A., Hana, J., Štindlová, B., & Feldman, A.
(2014) Evaluating and automating the annotation of a learner corpus. Language Resources and Evaluation, 48(1), 65–92. DOI logoGoogle Scholar
Santorini, B.
(1990) Part-of-speech tagging guidelines for the Penn Treebank Project (3rd revision, 2nd printing) (Technical report). Retrieved from [URL] (last accessed February 2018).
Tono, Y., & Díez-Bedmar, M. B.
(2014) Focus on learner writing at the beginning and intermediate stages: The ICCI corpus. International Journal of Corpus Linguistics, 19(2), 163–177. DOI logoGoogle Scholar
Cited by

Cited by 24 other publications

Ballier, Nicolas, Thomas Gaillat, Andrew Simpkin, Bernardo Stearns, Manon Bouyé & Manel Zarrouk
2019. A Supervised Learning Model for the Automatic Assessment of Language Levels Based on Learner Errors. In Transforming Learning with Meaningful Technologies [Lecture Notes in Computer Science, 11722],  pp. 308 ff. DOI logo
Berti, Barbara, Andrea Esuli & Fabrizio Sebastiani
2023. Unravelling interlanguage facts via explainable machine learning. Digital Scholarship in the Humanities 38:3  pp. 953 ff. DOI logo
Chen, Xiaobin, Theodora Alexopoulou & Ianthi Tsimpli
2021. Automatic extraction of subordinate clauses and its application in second language acquisition research. Behavior Research Methods 53:2  pp. 803 ff. DOI logo
Crossley, Scott & Langdon Holmes
2023. Assessing receptive vocabulary using state‑of‑the‑art natural language processing techniques. Journal of Second Language Studies 6:1  pp. 1 ff. DOI logo
Du, Xiangtao, Muhammad Afzaal & Hind Al Fadda
2022. Collocation Use in EFL Learners’ Writing Across Multiple Language Proficiencies: A Corpus-Driven Study. Frontiers in Psychology 13 DOI logo
Durrant, Philip
2022. Studying children's writing development with a corpus. Applied Corpus Linguistics 2:3  pp. 100026 ff. DOI logo
Gaillat, Thomas, Andrew Simpkin, Nicolas Ballier, Bernardo Stearns, Annanda Sousa, Manon Bouyé & Manel Zarrouk
2022. Predicting CEFR levels in learners of English: The use of microsystem criterial features in a machine learning approach. ReCALL 34:2  pp. 130 ff. DOI logo
Gilquin, Gaëtanelle
2020. Learner Corpora. In A Practical Handbook of Corpus Linguistics,  pp. 283 ff. DOI logo
Huang, Yan, Akira Murakami, Theodora Alexopoulou & Anna Korhonen
2021. Subcategorization frame identification for learner English. International Journal of Corpus Linguistics 26:2  pp. 187 ff. DOI logo
Kyle, Kristopher
2021. Natural language processing for learner corpus research. International Journal of Learner Corpus Research 7:1  pp. 1 ff. DOI logo
Ma, Hong, Jinglei Wang & Lianzhen He
2023. Linguistic Features Distinguishing Students’ Writing Ability Aligned with CEFR Levels. Applied Linguistics DOI logo
McCallum, Lee & Philip Durrant
2022. Shaping Writing Grades, DOI logo
Murakami, Akira & Nick C. Ellis
2022. Effects of Availability, Contingency, and Formulaicity on the Accuracy of English Grammatical Morphemes in Second Language Writing. Language Learning 72:4  pp. 899 ff. DOI logo
Rubin, Rachel
2021. Assessing the impact of automatic dependency annotation on the measurement of phraseological complexity in L2 Dutch. International Journal of Learner Corpus Research 7:1  pp. 131 ff. DOI logo
Shatz, Itamar
2020. Refining and modifying the EFCAMDAT. International Journal of Learner Corpus Research 6:2  pp. 220 ff. DOI logo
Shatz, Itamar, Theodora Alexopoulou, Akira Murakami & Ramona Bongelli
2023. Examining the potential influence of crosslinguistic lexical similarity on word-choice transfer in L2 English. PLOS ONE 18:2  pp. e0281137 ff. DOI logo
Spina, Stefania, Irene Fioravanti, Luciana Forti & Fabio Zanda
2023. The CELI corpus: Design and linguistic annotation of a new online learner corpus. Second Language Research DOI logo
Sun, Kun & Xiaofei Lu
2021. Assessing Lexical Psychological Properties in Second Language Production: A Dynamic Semantic Similarity Approach. Frontiers in Psychology 12 DOI logo
Sun, Kun & Rong Wang
2021. Using the Relative Entropy of Linguistic Complexity to Assess L2 Language Proficiency Development. Entropy 23:8  pp. 1080 ff. DOI logo
Tan, Yi & Ute Römer
2022. Using phrase-frames to trace the language development of L1 Chinese learners of English. System 108  pp. 102844 ff. DOI logo
Xia, Detong, Haiyang Ai & Hye K. Pae
2022. “Please let me know”. International Journal of Learner Corpus Research 8:1  pp. 1 ff. DOI logo
Xia, Detong, Mark A. Sulzer & Hye K. Pae
2023. Phrase-frames in business emails: a contrast between learners of business English and working professionals. Text & Talk 0:0 DOI logo
[no author supplied]
2022. Automated Essay Scoring [Synthesis Lectures on Human Language Technologies, ], DOI logo

This list is based on CrossRef data as of 26 november 2023. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.