Article published in:
International Journal of Learner Corpus Research
Vol. 8:2 (2022) ► pp. 237260
References
Anderson, J. C., & Gerbing, D. W.
(1982) Some methods for respecifying measurement models to obtain unidimensional construct measurement. Journal of Marketing Research, 19 (4), 453–460. DOI logoGoogle Scholar
Biber, D.
(1988) Variation across speech and writing. Cambridge University Press. DOI logoGoogle Scholar
Bollen, K. A.
(1989) Structural equations with latent variables. Wiley. DOI logoGoogle Scholar
(2002) Latent variables in psychology and the social sciences. Annual Review of Psychology, 53 1, 605–634. DOI logoGoogle Scholar
Bollen, K. A., & Lennox, R.
(1991) Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110 1, 305–314. DOI logoGoogle Scholar
Doughty, C. J.
(2019) Cognitive language aptitude. Language Learning, 69 1, 101–126. DOI logoGoogle Scholar
Gilquin, G.
(2021) The Process Corpus of English in Education: Going beyond the written text. Research in Corpus Linguistics, 10 (1), 31–44. DOI logoGoogle Scholar
Götz, S.
(2019) Filled pauses across proficiency levels, L1s and learning context variables: A multivariate exploration of the Trinity Lancaster Corpus Sample. International Journal of Learner Corpus Research, 5 (2), 159–180. DOI logoGoogle Scholar
Gries, S. Th., & Wulff, S.
(2021) Examining individual variation in learner production data: A few programmatic pointers for corpus-based analyses using the example of adverbial clause ordering. Applied Psycholinguistics, 42 1, 279–299. DOI logoGoogle Scholar
Hancock, G. R., & Schoonen, R.
(2015) Structural equation modeling: Possibilities for language learning researchers. Language Learning, 65 (Supp. 1), 160–184. DOI logoGoogle Scholar
Henseler, J.
(2021) Composite-based structural equation modeling: Analyzing latent and emergent variables. Guilford Press.Google Scholar
Hu, L.-T., & Bentler, P. M.
(1999) Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6 (1), 1–55. DOI logoGoogle Scholar
In’nami, Y., & Koizumi, R.
(2011) Structural equation modeling in language testing and learning research: A review. Language Assessment Quarterly, 8 1, 250–276. DOI logoGoogle Scholar
Kline, R. B.
(2013) Reverse arrow dynamics: Feedback loops and formative measurement. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed.) (pp. 41–79). Information Age Publishing.Google Scholar
(2016) Principles and practice of structural equation modeling (4th ed.). The Guilford Press.Google Scholar
Larsson, T., Plonsky, L., & Hancock, G. R.
(2021) On the benefits of structural equation modeling for corpus linguists. Corpus Linguistics and Linguistic Theory, 17 (3), 683–714. DOI logoGoogle Scholar
Li, S.
(2016) The construct validity of language aptitude: A Meta-Analysis. Studies in Second Language Acquisition, 38(4), 801–842. DOI logoGoogle Scholar
Linck, J. A., Osthus, P., Koeth, J. T., & Bunting, M. F.
(2014) Working memory and second language comprehension and production: A meta-analysis. Psychonomic bulletin & review, 21(4), 861–883. DOI logoGoogle Scholar
MacIntyre, P., Gregersen, T., & Mercer, S.
(2019) Setting an agenda for positive psychology in SLA: Theory, practice, and research. Modern Language Journal, 103 1, 262–274. DOI logoGoogle Scholar
Marsh, H. W., Hau, K.-T., & Wen, Z.
(2004) In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling: A Multidisciplinary Journal, 11 1, 320–341. DOI logoGoogle Scholar
Mukherjee, J., & Götz, S.
(2015) Learner corpora and learning context. In S. Granger, G. Gilquin, & F. Meunier (Eds.), Cambridge Handbook of Learner Corpus Research (pp. 423–442). Cambridge University Press. DOI logoGoogle Scholar
Posey, C., Roberts, T. L., Lowry, P. B., & Bennett, R. J.
(2015) Multiple indicators and multiple causes (MIMIC) models as a mixed-modeling technique: A tutorial and an annotated example. Communications of the Association for Information Systems, 36 (Article 11), 179–204. DOI logoGoogle Scholar
R Core Team
(2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://​www​.R​-project​.org/
Rodgers, J. L.
(2010) The epistemology of mathematical and statistical modeling: A quiet methodological revolution. American Psychologist, 65 1, 1–12. DOI logoGoogle Scholar
Rosseel, Y.
(2012)  lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48 (2), 1–36. DOI logoGoogle Scholar
Sudina, E., & Plonsky, L.
(2021) Academic perseverance in foreign language learning: An investigation of language-specific grit and its conceptual correlates. Modern Language Journal, 105 1, 829–857. DOI logoGoogle Scholar
Teimouri, Y.
(2017) L2 selves, emotions, and motivated behaviors. Studies in Second Language Acquisition, 39 1, 681–709. DOI logoGoogle Scholar
Teimouri, Y., Goetze, J., & Plonsky, L.
(2019) Second language anxiety and achievement: A meta-analysis. Studies in Second Language Acquisition, 41 1, 363–387. DOI logoGoogle Scholar
Tekwe, C. D., Zoh, R. S., Bazer, F. W., Wu, G., & Carrol, R. J.
(2018) Functional multiple indicators, multiple causes measurement error models. Biometrics, 74 (1), 127–134. DOI logoGoogle Scholar
Watanabe, M., Hirose, K., Den, Y., & Minematsu, N.
(2008) Filled pauses as cues to the complexity of up-coming phrases for native and non-native listeners. Speech Communication, 50 (2), 81–94. DOI logoGoogle Scholar