Article published in:
Interaction Studies
Vol. 17:3 (2016) ► pp. 321347
References
Ahlberg, J.
(2001) CANDIDE-3 – an updated parameterized face (Report No. LiTH-ISY-R-2326). Dept. of Electrical Engineering, Linköping University, Sweden.Google Scholar
Ba, S. O., & Odobez, J. M.
(2006) Head pose tracking and focus of attention recognition algorithms in meeting rooms. In: Stiefelhagen, R., Garofolo, J.S. (eds.) CLEAR 2006. LNCS, vol. 41221, pp. 345–357. Springer, Heidelberg.Google Scholar
Bargh, J. A.
(1988) Automatic information processing: Implications for communication and affect. In L. Donohew, H. Sypher, & E. T. Higgins (Eds.), Communication, social cognition and affect (pp. 9–32). Hillsdale, NJ: Lawrence Erlbaum Associates, IncGoogle Scholar
Belpaeme, T., Baxter, P., Read, R., Wood, R., Cuayáhuitl, H., Kiefer, B., … Humbert., R.
(2012) Multimodal Child-Robot Interaction: Building Social Bonds. Journal of Human-Robot Interaction, 11, 33–55.Google Scholar
Ben-Shakhar, G.
(1985) Standardization within individuals: A simple method to neutralize individual differences in skin conductance. Psychophysiology, 221, 292–299. DOI logoGoogle Scholar
Boucsein, W., Fowles, D.C., Grimnes, S., Ben-Shakhar, G., Roth, W.T., & Filion, D.L.
(2012) Publication recommendations for electrodermal measurements. Psychophysiology, 491, 1017–1034. DOI logoGoogle Scholar
Bowlby, J.
(1970) Disruption of affectional bonds and its effects on behavior. Journal of Contemporary Psychotherapy, 21, 75–86. DOI logoGoogle Scholar
Brush, T. A.
(1997) The effects of group composition on achievement and time on task for students completing ILS activities in cooperative pairs. Journal of Research on Computing in Education, 30(1), 2–17. DOI logoGoogle Scholar
Castellano, G., Paiva, A., Kappas, A., Aylett, R., Hastie, H., Barendregt, W., Nabais, F., & Bull, S.
(2013) Towards empathic virtual and robotic tutors. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 79261, pp. 733–736. Springer, HeidelbergGoogle Scholar
Chanel, G., Rebetez, C., Bétrancourt, M., & Pun, T.
(2008) Boredom, engagement and anxiety as indicators for adaptation to difficulty in games. In Proceedings of the 12th international conference on Entertainment and media in the ubiquitous era (pp. 13–17). ACM.Google Scholar
Conati, C.
(2002) Probabilistic assessment of user’s emotions in educational games. Applied Artificial Intelligence, 161, 555–575. DOI logoGoogle Scholar
Corrigan, L.J., Basedow, C., Küster, D., Kappas, A., Peters, C., & Castellano, G.
(2015) Perception matters! Engagement in task orientated social robotics, in Robot and Human Interactive Communication (RO-MAN) 2015 24th IEEE International Symposium, KOBE, Aug. 31 2015-Sept. 4, pp. 375–380.Google Scholar
Corrigan, L.J., Peters, C., Küster, D., & Castellano, G.
(2016) Engagement Perception and Generation for Social Robots and Virtual Agents, in Esposito, A., Jain, L.C., (Eds.), Toward Robotic Socially Believable Behaving Systems – Modelling Emotions – Intelligent Systems Reference Library, Vol. 1051 – In Print DOI logoGoogle Scholar
Cruickshank, D. R., Jenkins, D. B., & Metcalf, K. K.
(2009) The act of teaching. (5th ed.), Boston: McGraw-Hill Higher Education.Google Scholar
Csikszentmihalyi, M.
(1990) Flow: The Psychology of Optimal Experience. New York: Harper Perennial, (5th ed.), Boston: McGraw-Hill Higher Education.Google Scholar
D’Mello, S., Chipman, P., & Graesser, A. C.
(2007) Posture as a predictor of learner’s affective engagement. In Proceedings of the 29th annual cognitive science society (Vol. 11, pp. 905–910). Cognitive Science Society, Austin, TX.Google Scholar
D’Mello, S. K., & Graesser, A.
(2010) Multimodal semi-automated affect detection from conversational cues, gross body language, and facial features. User Modeling and User-Adapted Interaction, 201, 147–187. DOI logoGoogle Scholar
Dawson, M. E., Schell, A. M., & Filion, D. L.
(2007) The electrodermal system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 159–181). New York: Cambridge University Press. DOI logoGoogle Scholar
Feldman, R.
(2007) Parent–infant synchrony and the construction of shared timing; physiological precursors, developmental outcomes, and risk conditions. Journal of Child psychology and Psychiatry, 481, 329–354. DOI logoGoogle Scholar
Fiore S.M., Wiltshire T.J., Lobato E.J. C., Jentsch F.G., Huang W.H., & Axelrod B.
(2013) Towards understanding social cues and signals in human-robot interaction: Effects of robot gaze and proxemic behavior, Frontiers in Psychology, Volume 41 DOI logoGoogle Scholar
Eresha, G., Haring, M., Endrass, B., Andre, E., & Obaid, M.
(2013) Investigating the influence of culture on proxemic behaviors for humanoid robots. In Proceedings of RO-MAN 2013 IEEE (pp. 430–435). IEEE.Google Scholar
Fong, T., Thorpe, C., & Baur, C.
(2002) Robot as partner: Vehicle teleoperation with collaborative control. In Proceedings from the 2002 NRL Workshop on MultiRobot Systems, Washington, D. C. DOI logoGoogle Scholar
Ford, A. D., Olmi, D. J., Edwards, R. P., & Tingstrom, D. H.
(2001) The sequential introduction of compliance training components with elementary-aged children in general education classroom settings. School Psychology Quarterly, 161, 142–157. DOI logoGoogle Scholar
Fridlund, A. J.
(1994) Human facial expression: An evolutionary view. San Diego, CA: Academic Press.Google Scholar
Hall, E. T.
(1966) The Hidden Dimension. New York: DoubledayGoogle Scholar
Hattie, J.
(2009) Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York, Routledge.Google Scholar
Hollenstein, T., & Lanteigne, D.
(2014) Models and methods of emotional concordance. Biological psychology, 981, 1–5. DOI logoGoogle Scholar
Horiguch, Y., Sawaragi, T., & Akashi, G.
(2000) Naturalistic human-robot collaboration based upon mixed-initiative interactions in teleoperating environment. In Systems, Man, and Cybernetics, 2000 IEEE International Conference on (Vol. 21, pp. 876–881). IEEE.Google Scholar
Jones, V., & Jones, L.
(1995), Comprehensive classroom management (4th ed.) Boston: Allyn & BaconGoogle Scholar
Kennedy, J., Baxter, P., & Belpaeme, T.
(2014) Comparing robot embodiments in a guided discovery learning interaction with children. International Journal of Social Robotics, 71, 293–308. DOI logoGoogle Scholar
Kim, Y., & Mutlu, B.
(2014) How social distance shapes human–robot interaction. International Journal of Human-Computer Studies, 721, 783–795. DOI logoGoogle Scholar
Koay K.L., Syrdal D.S., Ashagari-Oskoei, M., Walters, M.L., & Dautenhahn K.
(2014) Social Roles and Baseline Proxemic Preferences for a Domestic Service Robot. International Journal of Social Robotics 61: 469–488. DOI logoGoogle Scholar
Küster, D., & Kappas, A.
(2014) What could a body tell a social robot that it does not know? In A. Holzinger, S. H. Fairclough, D. Majoe, & H. P. da Silva (Eds.), In Proceedings of the International Conference on Physiological Computing Systems (pp. 358–367). SciTePress Digital Library. DOI logoGoogle Scholar
Leite, I., Henriques, R., Martinho, C., & Paiva, A.
(2013) Sensors in the wild: exploring electrodermal activity in child-robot interaction. In Proceedings of the 8th ACM/IEEE international conference on Human-robot interaction (pp. 41–48). IEEE Press.Google Scholar
Malta, L., Miyajima, C. & Takeda, K.
(2008) Multimodal estimation of a driver’s affective state. In Workshop on Affective Interaction in Natural Environments (AFFINE), ACM International Conference on Multimodal Interfaces (ICMI’08), Chania, Crete, Greece.Google Scholar
Mauss, I. B., & Robinson, M. D.
(2009) Measures of emotion: A review. Cognition and emotion, 231, 209–237.Google Scholar
Mead, R., Atrash, M., & Matarić, M.J.
(2013) “Automated Proxemic Feature Extraction and Behavior Recognition: Applications in Human-Robot Interaction”, International Journal of Social Robotics, (123691): 1–12.Google Scholar
Papadopoulos, F., Dautenhahn, K., & Ho, W. C.
(2012) Exploring the use of robots as social mediators in a remote human-human collaborative communication experiment. Paladyn, 31, 1–10. DOI logoGoogle Scholar
(2013) AIBOStory – Autonomous Robots supporting Interactive, Collaborative Story-telling. Paladyn, Journal of Behavioral Robotics, 41, 10–22. Chicago.Google Scholar
Picard, W., & Healey, J. A.
(2000) Wearable and automotive systems for affect recognition from physiology, MIT, Tech. Rev.Google Scholar
Picard, R. W., Fedor, S., & Ayzenberg, Y.
(2016) Multiple arousal theory and daily-life electrodermal activity asymmetry. Emotion Review, 81, 62–75. DOI logoGoogle Scholar
Prendinger, H., Mayer, S., Mori, J., & Ishizuka, M.
(2003) Persona effect revisited: Using bio-signals to measure and reflect the impact of character-based interfaces. In Proceedings of the 4th International Working Conference on Intelligent Virtual Agents, (IVA-031), pages 283–291, Kloster Irsee, GermanyGoogle Scholar
Riedmiller, M., & Braun, H.
(1993) A direct adaptive method for faster backpropagation learning: The RPROP algorithm. Proceedings of the 1993 IEEE International Conference on Neural Networks (ICNN 93), vol. 11, San Francisco, pp. 586–591.Google Scholar
Robison, J. L., Mcquiggan, S. W. & Lester, J. C.
(2009) Modeling Task-Based vs. Affect-based Feedback Behavior in Pedagogical Agents: An Inductive Approach, In Proceedings of the 2009 conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, Amsterdam, The Netherlands, The Netherlands, pp. 25–32.Google Scholar
Sidner, C. L., Kidd, C. D., Lee, C., & Lesh, N.
(2004) Where to look: a study of human-robot engagement. In Proceedings of the 9th international conference on Intelligent user interfaces (pp. 78–84). ACM. DOI logoGoogle Scholar
Takayama, L., & Pantofaru, C.
(2009) Influences on proxemic behaviors in human-robot interaction. In Intelligent Robots and Systems. IROS 2009. IEEE/RSJ International Conference on (pp. 5495–5502). IEEE.Google Scholar
Tassinary, L. G., Cacioppo, J. T. and Vanman, E. J.
(2007) The skeletomotor system: Surface electromyography. In J. T. Cacioppo, L. G. Tassinary and G. G. Berntson (Ed.), Handbook of Psychophysiology 3rd ed. (pp. 267–299). New York: Cambridge University Press. DOI logoGoogle Scholar
Wall, A.
(1993) How Teacher Location in the Classroom Can Improve Students’ Behavior, The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 66 (5), 299–301. DOI logoGoogle Scholar
Walters, M.L., Oskoei, M.A., Syrdal, D.S., & Dautenhahn, K.
(2011) A Long-Term Human-Robot Proxemic Study. Proceedings RO-MAN 2011, 20th IEEE International Symposium on Robot and Human Interactive Communication, Atlanta, Georgia, USA – 31 July – 3 August 2011, pp. 137–142. DOI logoGoogle Scholar
Zaga, C., Truong, K. P., Lohse, M., & Evers, V.
(2014) Exploring child-robot engagement in a collaborative task. In: Proceedings of the Child-Robot Interaction Workshop: Social Bonding, Learning and Ethics, 17 Jun 2014, Aarhus, Denmark. Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa (INESC-ID).Google Scholar
Cited by

Cited by 10 other publications

Chapa Sirithunge, H. P., H. M. Ravindu T. Bandara, A. G. Buddhika P. Jayasekara, D. P. Chandima & H. M. Harsha S. Abeykoon
2019.  In Social Robots: Technological, Societal and Ethical Aspects of Human-Robot Interaction [Human–Computer Interaction Series, ],  pp. 37 ff. Crossref logo
de la Puente, Paloma, Markus Bajones, Christian Reuther, Daniel Wolf, David Fischinger & Markus Vincze
2019. Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent & Robotic Systems 94:2  pp. 455 ff. Crossref logo
Fiorini, Laura, Luigi Coviello, Alessandra Sorrentino, Daniele Sancarlo, Filomena Ciccone, Grazia D’Onofrio, Gianmaria Mancioppi, Erika Rovini & Filippo Cavallo
2022. User Profiling to Enhance Clinical Assessment and Human–Robot Interaction: A Feasibility Study. International Journal of Social Robotics Crossref logo
Gracia, Luis, J. Ernesto Solanes, Pau Muñoz-Benavent, Jaime Valls Miro, Carlos Perez-Vidal & Josep Tornero
2019. Human-robot collaboration for surface treatment tasks. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems 20:1  pp. 148 ff. Crossref logo
Obaid, Mohammad, Ruth Aylett, Wolmet Barendregt, Christina Basedow, Lee J. Corrigan, Lynne Hall, Aidan Jones, Arvid Kappas, Dennis Küster, Ana Paiva, Fotios Papadopoulos, Sofia Serholt & Ginevra Castellano
2018. Endowing a Robotic Tutor with Empathic Qualities: Design and Pilot Evaluation. International Journal of Humanoid Robotics 15:06  pp. 1850025 ff. Crossref logo
Oertel, Catharine, Ginevra Castellano, Mohamed Chetouani, Jauwairia Nasir, Mohammad Obaid, Catherine Pelachaud & Christopher Peters
2020. Engagement in Human-Agent Interaction: An Overview. Frontiers in Robotics and AI 7 Crossref logo
Perugia, Giulia, Maike Paetzel-Prüsmann, Madelene Alanenpää & Ginevra Castellano
2021. I Can See It in Your Eyes: Gaze as an Implicit Cue of Uncanniness and Task Performance in Repeated Interactions With Robots. Frontiers in Robotics and AI 8 Crossref logo
Saunderson, Shane & Goldie Nejat
2019. How Robots Influence Humans: A Survey of Nonverbal Communication in Social Human–Robot Interaction. International Journal of Social Robotics 11:4  pp. 575 ff. Crossref logo
Sen, Wang, Zhao Hong & Zhu Xiaomei
2022. Effects of human–machine interaction on employee’s learning: A contingent perspective. Frontiers in Psychology 13 Crossref logo
Sirithunge, Chapa, H. M. Ravindu T. Bandara, A. G. Buddhika P. Jayasekara & D. P. Chandima
2020. A probabilistic evaluation of human activity space for proactive approach behavior of a social robot. Paladyn, Journal of Behavioral Robotics 12:1  pp. 102 ff. Crossref logo

This list is based on CrossRef data as of 14 january 2023. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.