Article published in:
ITL - International Journal of Applied Linguistics
Vol. 172:1 (2021) ► pp. 325
References

References

Abelson, R. P.
(1995) Statistics as principled argument. New York, NY: Psychology Press.Google Scholar
Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., & Kievit, R. A.
(2019) Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Research, 4, 63. CrossrefGoogle Scholar
Anscombe, F. J.
(1973) Graphs in statistical analysis. The American Statistician, 27(1), 17–21. CrossrefGoogle Scholar
Anwyl-Irvine, A., Dalmaijer, E. S., Hodges, N., & Evershed, J. K.
(2020) Online participants in the wild: Realistic precision & accuracy of platforms, web-browsers, and devices. PsyArxiv Preprints. CrossrefGoogle Scholar
Baayen, R. H.
(2010) A real experiment is a factorial experiment? The Mental Lexicon, 5(1), 149–157. CrossrefGoogle Scholar
Baguley, T.
(2009) Standardized or simple effect size: What should be reported? British Journal of Psychology, 100(3), 603–617. CrossrefGoogle Scholar
Bender, R., & Lange, S.
(2001) Adjusting for multiple testing: When and how? Journal of Clinical Epidemiology, 54(4), 343–349. CrossrefGoogle Scholar
Bridges, D., Pitiot, A., MacAskill, M., & Peirce, J.
(2020) The timing mega-study: Comparing a range of experiment generators, both lab-based and online. PsyArxiv Preprints. CrossrefGoogle Scholar
Chambers, C.
(2017) The seven deadly sins of psychology: A manifesto for reforming the culture of scientific practice. Princeton, NJ: Princeton University Press.Google Scholar
Chatfield, C.
(1983) Statistics for technology: A course in applied statistics (3rd ed.). Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Clark, M.
(2019) Generalized additive models. Retrieved from https://​m​-clark​.github​.io​/generalized​-additive​-models/
Cohen, J.
(1983) The cost of dichotomization. Applied Psychological Measurement, 7, 249–253. CrossrefGoogle Scholar
(1994) The Earth is round (p<.05). American Psychologist, 49, 997–1003. CrossrefGoogle Scholar
Cramer, A. O. J., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, R. P. P .P., … Wagenmakers, E. -J.
(2016) Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. Psychonomic Bulletin & Review, 23(2), 640–647. CrossrefGoogle Scholar
de Groot, A. D.
(2014) The meaning of “significance” for different types of research. Acta Psychologica, 148, 188–194. CrossrefGoogle Scholar
Delacre, M., Lakens, D., & Leys, C.
(2017) Why psychologists should by default use Welch’s t-test instead of Student’s t-test. International Review of Social Psychology, 30(1), 92–101. CrossrefGoogle Scholar
Delacre, M., Leys, C., Mora, Y. L., & Lakens, D.
(2019) Taking parametric assumptions seriously: Arguments for the use of Welch’s F-test instead of the classical F-test in one-way ANOVA. International Review of Social Psychology, 32(1), 13. Crossref
Ehrenberg, A. S. C.
(1977) Rudiments of numeracy. Journal of the Royal Statistical Society. Series A (General), 140(3), 277–297. CrossrefGoogle Scholar
(1981) The problem of numeracy. The American Statistician, 35(2), 67–71. CrossrefGoogle Scholar
Elwert, F.
(2013) Graphical causal models. In S. L. Morgan (Ed.), Handbook of causal analysis for social research (pp. 245–273). Dordrecht, The Netherlands: Springer. CrossrefGoogle Scholar
Emerson, J. W., Green, W. A., Schloerke, B., Crowley, J., Cook, D., Hofmann, H., & Wickham, H.
(2013) The generalized pairs plot. Journal of Computational and Graphical Statistics, 22(1), 79–91. CrossrefGoogle Scholar
Feinberg, R. A., & Wainer, H.
(2011) Extracting sunbeams from cucumbers. Journal of Computational and Graphical Statistics, 20(4), 793–810. CrossrefGoogle Scholar
Fox, J.
(2003) Effect displays in R for generalised linear models. Journal of Statistical Software, 8, 1–27. CrossrefGoogle Scholar
Gelman, A., & Hill, J.
(2007) Data analysis using regression and multilevel/hierarchical models. New York, NY: Cambridge University Press.Google Scholar
Gelman, A., & Loken, E.
(2013) The garden of forking paths: Why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time. Retrieved from http://​www​.stat​.columbia​.edu​/~gelman​/research​/unpublished​/p​_hacking​.pdf
Gigerenzer, G., & Marewski, J. M.
(2015) Surrogate science: The idol of a universal method for scientific inference. Journal of Management, 41(2), 421–440. CrossrefGoogle Scholar
Goodman, S.
(2008) A dirty dozen: Twelve p-value misconceptions. Seminars in Hematology, 45, 135–140. CrossrefGoogle Scholar
Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G.
(2016) Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. European Journal of Epidemiology, 31, 337–350. CrossrefGoogle Scholar
Healy, K.
(2019) Data visualization: A practical introduction. Princeton, NJ: Princeton University Press.Google Scholar
Hendrix, L. J., Carter, M. W., & Hintze, J. L.
(1978) A comparison of five statistical methods for analyzing pretest-posttest designs. Journal of Experimental Education, 47(2), 96–102. CrossrefGoogle Scholar
Hesterberg, T. C.
(2015) What teachers should know about the bootstrap: Resampling in the undergraduate statistics curriculum. The American Statistician, 69(4), 371–386. CrossrefGoogle Scholar
Huck, S. W., & McLean, R. A.
(1975) Using a repeated measures ANOVA to analyze the data from a pretest-posttest design: A potentially confusing task. Psychological Bulletin, 82(4), 511–518. CrossrefGoogle Scholar
Huitema, B. E.
(2011) The analysis of covariance and alternatives: Statistical methods for experiments, quasi-experiments, and single-case studies. Hoboken, NJ: Wiley. CrossrefGoogle Scholar
Hünermund, P., & Louw, B.
(2020) On the nuisance of control variables in regression analysis. https://​arxiv​.org​/abs​/2005​.10314
Jacoby, W. G.
(2006) The dot plot: A graphical display for labeled quantitative values. The Political Methodologist, 14(1), 6–14.Google Scholar
Kerr, N. L.
(1998) HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2(3), 196–217. CrossrefGoogle Scholar
Klein, O., Hardwicke, T. E., Aust, F., Breuer, J., Danielsson, H., Hofelich Mohr, A., … Frank, M. C.
(2018) A practical guide for transparency in psychological science. Collabra: Psychology, 4(1), 20. CrossrefGoogle Scholar
Krashen, S.
(2012) A short paper proposing that we need to write shorter papers. Language and Language Teaching, 1(2), 38–39.Google Scholar
Larson-Hall, J., & Plonsky, L.
(2015) Reporting and interpreting quantitative research findings: What gets reported and recommendations for the field. Language Learning, 65(s1), 127–159. CrossrefGoogle Scholar
Loewen, S., Gönülal, T., Isbell, D. R., Ballard, L., Crowther, D., Lim, J., … Tigchelaar, M.
(2019) How knowledgeable are applied linguistics and SLA researchers about basic statistics?: Data from North America and Europe. Studies in Second Language Acquisition. CrossrefGoogle Scholar
MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D.
(2002) On the practice of dichotomization of quantitative variables. Psychological Methods, 7(1), 19–40. CrossrefGoogle Scholar
Maris, E.
(1998) Covariance adjustment versus gain scores – revisited. Psychological Methods, 3(3), 309–327. CrossrefGoogle Scholar
Maxwell, S. E., & Delaney, H. D.
(1993) Bivariate median splits and spurious statistical significance. Psychological Bulletin, 113(1), 181–190. CrossrefGoogle Scholar
Maxwell, S. E., Delaney, H., & Hill, C. A.
(1984) Another look at ANCOVA versus blocking. Psychological Bulletin, 95(1), 136–147. CrossrefGoogle Scholar
McAweeney, M. J., & Klockars, A. J.
(1998) Maximizing power in skewed distributions: Analysis and assignment. Psychological Methods, 3(1), 117–122. CrossrefGoogle Scholar
Murtaugh, P. A.
(2007) Simplicity and complexity in ecological data analysis. Ecology, 88(1), 56–62. CrossrefGoogle Scholar
Mutz, D. C., Pemantle, R., & Pham, P.
(2019) The perils of balance testing in experimental design: Messy analyses of clean data. The American Statistician, 73(1), 32–42. CrossrefGoogle Scholar
Robbins, N. B.
(2005) Creating more effective graphs. Hoboken, NJ: Wiley.Google Scholar
Rohrer, J. M.
(2018) Thinking clearly about correlations and causation: Graphical causal models for observational data. Advances in Methods and Practices in Psychological Science, 1(1), 27–42. CrossrefGoogle Scholar
Rubin, M.
(2017) Do p values lose their meaning in exploratory analyses? It depends how you define the familywise error rate. Review of General Psychology, 21(3), 269–275. CrossrefGoogle Scholar
Ruxton, G. D., & Beauchamp, G.
(2008) Time for some a priori thinking about post hoc testing. Behavioral Ecology, 19(3), 690–693. CrossrefGoogle Scholar
Sassenhagen, J., & Alday, P. M.
(2016) A common misapplication of statistical inference: Nuisance control with null-hypothesis significance tests. Brain and Language, 162, 42–45. CrossrefGoogle Scholar
Schad, D. J., Vasishth, S., Hohenstein, S., & Kliegl, R.
(2020) How to capitalize on a priori contrasts in linear (mixed) models: A tutorial. Journal of Memory and Language, 110. CrossrefGoogle Scholar
Schmider, E., Ziegler, M., Danay, E., Beyer, L., & Bühner, M.
(2010) Is it really robust? Reinvestigating the robustness of anova against violations of the normal distribution assumption. Methodology, 6, 147–151. CrossrefGoogle Scholar
Senn, S.
(2012) Seven myths of randomisation in clinical trials. Statistics in Medicine, 32, 1439–1450. CrossrefGoogle Scholar
Sönning, L.
(2016) The dot plot: A graphical tool for data analysis and presentation. In H. Christ, D. Klenovšak, L. Sönning, & V. Werner (Eds.), A blend of MaLT: Selected contributions from the Methods and Linguistic Theories Symposium 2015 (pp. 101–129). Bamberg, Germany: University of Bamberg Press. CrossrefGoogle Scholar
Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W.
(2016) Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702–712. CrossrefGoogle Scholar
Tukey, J. W.
(1969) Analyzing data: Sanctification or detective work? American Psychologist, 24, 83–91. CrossrefGoogle Scholar
Vanhove, J.
(2015) Analyzing randomized controlled interventions: Three notes for applied linguists. Studies in Second Language Learning and Teaching, 5, 135–152. CrossrefGoogle Scholar
(2019a) Visualising statistical uncertainty using model-based graphs. Presentation at the 8th Biennial International Conference on the Linguistics of Contemporary English, Bamberg, Germany. Retrieved from https://​janhove​.github​.io​/visualise​_uncertainty/
(2019b) cannonball: Tools for teaching statistics. R package, version 0.1.0. Available from https://​github​.com​/janhove​/cannonball
(2020) Collinearity isn’t a disease that needs curing. PsyArXiv Preprints. CrossrefGoogle Scholar
Wainer, H.
(1992) Understanding graphs and tables. Educational Researchers, 21(1), 14–23. CrossrefGoogle Scholar
Weissgerber, T. L., Milic, N. M., Winham, S. J., & Garovic, V. D.
(2015) Beyond bar and line graphs: Time for a new data presentation paradigm. PLOS Biology, 13(4), e1002128. CrossrefGoogle Scholar
Wilke, C. O.
(2019) Fundamentals of data visualization: A primer on making informative and compelling figures. Sebastopol, CA: O’Reilly.Google Scholar
Zimmerman, D. W.
(1998) Invalidation of parametric and nonparametric statistical tests by concurrent violation of two assumptions. Journal of Experimental Education, 67(1), 55–68. CrossrefGoogle Scholar
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M.
(2009) Mixed effects models and extensions in ecology with R. New York, NY: Springer. CrossrefGoogle Scholar
Ågren, M., & van de Weijer, J.
(2019) The production of preverbal liaison in Swedish learners of L2 French. Language, Interaction and Acquisition, 10(1), 117–139. CrossrefGoogle Scholar