References (37)
Adler, J. (1998). A language of teaching dilemmas: Unlocking the complex multilingual secondary mathematics classroom. For the Learning of Mathematics, 18(1), 24–33.Google Scholar
Barwell, R. (2005). Integrating language and content: Issues from the mathematics classrooom. Linguistics and Education, 161, 205–218. DOI logoGoogle Scholar
. (2009). Mathematical word problems and bilingual learners in England. In R. Barwell (Ed.), Multilingualism in mathematics classrooms: Global perspectives (pp. 63–77). Bristol: Multilingual Matters. DOI logoGoogle Scholar
Bauersfeld, H. (1995). ‘Language games’ in the classroom: Their function and their effects. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 271–292). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Berger, A. (2013). Mathematiklernen im bilingualen Diskurs: Ein integriertes Sprache-Mathematik-Modell des Lösens von Textaufgaben mit Englisch als Arbeitssprache. [Learning mathematics bilingually: An Integrated Language and Mathematics Model (ILMM) of word problem solving processes in English as a foreign language.] Doctoral thesis, University of Vienna, Vienna, Austria.Google Scholar
Blum, W., & Leiß, D. (2005). Modellieren im Unterricht mit der ‘Tanken’ - Aufgabe. [Mathematical modelling in the classroom by means of the “filling up“ task] Mathematik Lehren, 1281, 18–21.Google Scholar
. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics: Proceedings from the Twelfth International Conference on the Teaching of Mathematical Modelling and Applications (pp. 222–231). Chichester: Horwood.Google Scholar
Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 86–95. DOI logoGoogle Scholar
. (2011). Wege zur Innenwelt des Mathematischen Modellierens: Kognitive Analysen zu Modellierungsprozessen im Mathematikunterricht. [Paths to the inner world of mathematical modelling: Cognitive analyses of modelling processes in mathematics lessons.] Wiesbaden: Vieweg & Teubner (GWV). DOI logoGoogle Scholar
Clarkson, P. (1992). Language and mathematics: A comparison of bilingual and monolingual students of mathematics. Educational Studies in Mathematics, 23(4), 417–429. DOI logoGoogle Scholar
. (2007). Australian Vietnamese students learning mathematics: High ability bilinguals and their use of their languages. Educational Studies in Mathematics, 641, 191–215. DOI logoGoogle Scholar
. (2009). Mathematics teaching in Australian multilingual classrooms: Developing an approach to the use of classroom languages. In R. Barwell (Ed.), Multilingualism in mathematics classrooms: Global perspectives (pp. 145–160). Bristol: Multilingual Matters. DOI logoGoogle Scholar
De Bot, K. (1992) A bilingual production model: Levelt’s speaking model adapted. Applied Linguistics, 13(1), 1–24. DOI logoGoogle Scholar
Ehlich, K., & Rehbein, J. (1976). Halbinterpretative Arbeitstranskription (HIAT). [Heuristic Interpretative Auditory Transcription.] Linguistische Berichte, 451, 21–41.Google Scholar
Ericsson, K.A., & Simon, H.A. (1993). Protocol analysis: Verbal reports as data (2nd ed.). Cambridge, MA: MIT Press. DOI logoGoogle Scholar
Khisty, L. (1995). Making inequality: Issues of language and meanings in mathematics teaching with Hispanic students. In W. Secada, E. Fennema, & L. Byrd Adajian (Eds.), New directions for equity in mathematics education (pp. 279–297). New York: Cambridge University Press.Google Scholar
. (2001). Effective teachers of second language learners in mathematics. In M. Van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (pp. 225–232). Utrecht: The Freudenthal Institute, Utrecht University.Google Scholar
Kintsch, W., & Greeno, J. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92(1), 109–129. DOI logoGoogle Scholar
Knoblich, G., & Öllinger, M. (2006). Die Methode des lauten Denkens. [The think-aloud method.] In J. Funke (Ed.), Handbuch der Allgemeinen Psychologie – Kognition (pp. 691–696). Göttingen: Hogrefe.Google Scholar
Levelt, W. (1989). Speaking: From intention to articulation (5th ed.). Cambridge, MA: MIT Press.Google Scholar
Lemke, J. (2003). Mathematics in the middle: Measure, picture, gesture, sign, and word. In M. Anderson (Ed.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 215–234). Ottawa: Legas.Google Scholar
Liu, K.K. (2015). The influence of the math classroom context on students’ academic English production. Journal of Immersion and Content-Based Language Education, 3(1), 127–147. DOI logoGoogle Scholar
Moschkovich, J.N. (2007). Examining mathematical discourse practices. For the Learning of Mathematics, 27(1), 24–30.Google Scholar
Novotná, J. (2004). Modelling the word problem solving process. An instrument to determine places suitable for teacher’s intervention. In H.-W. Henn (Ed.), Applications and modelling in mathematics education: Study Conference in Dortmund (Germany), February 13 - 17, 2004; pre-conference volume (ICMI study 14) (pp. 193–198). University of Dortmund, Department of Mathematics IEEM.Google Scholar
Novotná, J., Hadj-Moussová, Z., & Hofmannova, M. (2001). Teacher training for CLIL - Competences of a CLIL teacher. In M. Hejny & J. Novotná (Eds.), Proceedings SEMT 01 (pp. 122–126). Praha: Univerzita Karlova v Praze, Pedagogicka fakulta. Retrieved from [URL].Google Scholar
O’Halloran, K.L. (2005). Mathematical discourse: Language, symbolism and visual images. London: Continuum.Google Scholar
Pimm, D. (1987). Speaking mathematically: Communication in mathematics classrooms. New York: Routledge & K. Paul.Google Scholar
Poulisse, N., & Bongaerts, T. (1994). First language use in second language production. Applied Linguistics, 15(1), 36–57. DOI logoGoogle Scholar
Reusser, K. (1985) From situation to equation. On formulation understanding and solving “situation problems”. Technical Report 143. Boulder: University of Colorado, Institute of Cognitive Science.Google Scholar
. (1997). Erwerb mathematischer Kompetenzen: Literaturüberblick. Mathematische Textaufgaben als Unterrichts- und Forschungsgegenstand. [Aquisition of mathematical competences: Literature review. Mathematical word problems as an object of teaching and research.] In F.E. Weinert & A. Helmke (Eds.), Entwicklung im Grundschulalter (pp. 141–155). Weinheim: Beltz Psychologie-Verl.-Union.Google Scholar
Setati, M., & Adler, J. (2001). Between languages and discourses: Code switching practices in primary classrooms in South Africa. Educational Studies in Mathematics, 431, 243–269. DOI logoGoogle Scholar
Sfard, A. (2001) Learning mathematics as developing a discourse. In R. Speiser, C. Maher, & C. Walter (Eds.), Proceedings of 21st Conference of PME-NA (pp. 23–44). Columbus, OH: Clearing House for Science, Mathematics and Environmental Education.Google Scholar
. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. New York: Cambridge University Press. DOI logoGoogle Scholar
Sfard, A., & Lavie, I. (2005). Why cannot children see as the same what grown-ups cannot see as different? - Early numerical thinking revisited. Cognition and Instruction, 23(2), 237–309. DOI logoGoogle Scholar
Swain, M. (2006). Languaging, agency and collaboration in advanced second language proficiency. In H. Byrnes (Ed.), Advanced language learning: The contribution of Halliday and Vygotsky (pp. 95–108). London: Continuum.Google Scholar
Turnbull, M., Hart, D., & Lapkin, S. (2000). French immersion students’ performance on grade 3 provincial tests: Potential impacts on program design. Final report submitted to the Education Quality and Accountability Office. Toronto, CA: University of Toronto. Retrieved from [URL].Google Scholar
Weir, C., & Khalifa, H. (2008). A cognitive processing approach towards defining reading comprehension. Cambridge ESOL: Research notes, 311, 2–10.Google Scholar
Cited by (4)

Cited by four other publications

Ruiz-Cecilia, Raúl, Leopoldo Medina-Sánchez & Antonio-Manuel Rodríguez-García
2023. Teaching and Learning of Mathematics through CLIL, CBI, or EMI—A Systematic Literature Review. Mathematics 11:6  pp. 1347 ff. DOI logo
Jiménez-Gutiérrez, Jorge, Elvira Fernández-Ahumada & Natividad Adamuz-Povedano
2022. Textbooks for Bilingual Mathematics Classrooms. In Handbook of Research on International Approaches and Practices for Gamifying Mathematics [Advances in Game-Based Learning, ],  pp. 67 ff. DOI logo
Ballinger, Susan, Roy Lyster, Andrea Sterzuk & Fred Genesee
2017. Context-appropriate crosslinguistic pedagogy. Journal of Immersion and Content-Based Language Education 5:1  pp. 30 ff. DOI logo
Lyster, Roy
2017. Content-Based Language Teaching. In Content-Based Language Teaching,  pp. 1 ff. DOI logo

This list is based on CrossRef data as of 7 august 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.