Article published In:
Bi-/Multilingualism and the Declining Brain
Edited by Christos Pliatsikas, Ana Inés Ansaldo and Toms Voits
[Linguistic Approaches to Bilingualism 11:4] 2021
► pp. 459483
References
Abutalebi, J., Annoni, J. M., Zimine, I., Pegna, A. J., Seghier, M. L., Lee-Jahnke, H., Lazeyras, F., Cappa, S. F., & Khateb, A.
(2008) Language control and lexical competition in bilinguals: An event-related fMRI study. Cerebral Cortex, 18(7), 1496–1505. DOI logoGoogle Scholar
Abutalebi, J., Della Rosa, P. A., Gonzaga, A. K. C., Keim, R., Costa, A., & Perani, D.
(2013) The role of the left putamen in multilingual language production. Brain and Language, 125(3), 307–315. DOI logoGoogle Scholar
Abutalebi, J., & Green, D. W.
(2007) Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 201, 242–275. DOI logoGoogle Scholar
(2008) Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and Cognitive Processes, 23(4), 557–582. DOI logoGoogle Scholar
(2016) Neuroimaging of language control in bilinguals: neural adaptation and reserve. Bilingualism: Language and Cognition, 191(April), 1–10. DOI logoGoogle Scholar
Abutalebi, J., Miozzo, M., & Cappa, S. F.
(2000) Do subcortical structures control “language selection” in polyglots? Evidence from pathological language mixing. Neurocase, 61, 51–56.Google Scholar
Aglioti, S., Beltramello, A., Girardi, F., & Fabbro, F.
(1996) Neurolinguistic and follow-up study of an unusual pattern of recovery from bilingual subcortical aphasia. Brain : A Journal of Neurology, 119 (5), 1551–1564. DOI logoGoogle Scholar
Aglioti, S., & Fabbro, F.
(1993) Paradoxical selective recovery in a bilingual aphasic following subcortical lesions. Neuroreport, 4(12), 1359–1362. DOI logoGoogle Scholar
Ali, N., Green, D. W., Kherif, F., Devlin, J. T., & Price, C. J.
(2010) The Role of the Left Head of Caudate in Suppressing Irrelevant Words. Journal of Cognitive Neuroscience, 22(10), 2369–2386. DOI logoGoogle Scholar
Ansaldo, A. I., Saidi, L. G., & Ruiz, A.
(2010) Model‐driven intervention in bilingual aphasia: Evidence from a case of pathological language mixing. Aphasiology, 24(2), 309–324. DOI logoGoogle Scholar
Aron, A. R.
(2011) From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55–68. DOI logoGoogle Scholar
Aron, A. R., Schlaghecken, F., Fletcher, P. C., Bullmore, E. T., Eimer, M., Barker, R., Sahakian, B. J., Robbins, T. W.
(2003) Inhibition of subliminally primed responses is mediated by the caudate and thalamus: Evidence from functional MRI and Huntington’s disease. Brain, 126(3), 713–723. DOI logoGoogle Scholar
Aron, A. R., Watkins, L., Sahakian, B. J., Monsell, S., Barker, R. A., & Robbins, T. W.
(2003) Task-Set Switching Deficits in Early-Stage Huntington’s Disease: Implications for Basal Ganglia Function. Journal of Cognitive Neuroscience, 15(5), 629–642. DOI logoGoogle Scholar
Baake, V., Reijntjes, R. H. A. M., Dumas, E. M., Thompson, J. C., & Roos, R. A. C.
(2017) Cognitive decline in Huntington’s disease expansion gene carriers. Cortex, 951, 51–62. DOI logoGoogle Scholar
Branzi, F. M., Della Rosa, P. A., Canini, M., Costa, A., & Abutalebi, J.
(2016) Language control in bilinguals: Monitoring and response selection. Cerebral Cortex, 26(6), 2367–2380. DOI logoGoogle Scholar
Braver, T. S.
(2012) The variable nature of cognitive control: A dual-mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. DOI logoGoogle Scholar
Braver, T. S., Reynolds, J. R., & Donaldson, D. I.
(2003) Neural Mechanisms of Transient and Sustained Cognitive Control during Task Switching. Neuron, 39(4), 713–726. DOI logoGoogle Scholar
Calabria, M., Costa, A., Green, D. W., & Abutalebi, J.
(2018) Neural basis of bilingual language control. Ann N Y Acad Sci. DOI logo.Google Scholar
Calabria, M., Cattaneo, G., & Costa, A.
(2017) It is time to project into the future: “Bilingualism in healthy and pathological aging.” Journal of Neurolinguistics, 431, 1–3. DOI logoGoogle Scholar
Calabria, M., Marne, P., Romero-Pinel, L., Juncadella, M., & Costa, A.
(2014) Losing control of your languages: a case study. Cognitive Neuropsychology, 31(3), 266–286. DOI logoGoogle Scholar
Casey, B. J., Durston, S., & Fossella, J. A.
(2001) Evidence for a mechanistic model of cognitive control. Clinical Neuroscience Research, 1(4), 267–282. DOI logoGoogle Scholar
Cattaneo, G., Calabria, M., Marne, P., Gironell, A., Abutalebi, J., & Costa, A.
(2015) The role of executive control in bilingual language production: A study with Parkinson’s disease individuals. Neuropsychologia, 661, 99–110. DOI logoGoogle Scholar
Costa, A., & Santesteban, M.
(2004) Lexical access in bilingual speech production: evidence from language switching in highly proficient bilinguals and L2 learners. J. Mem.Lang., 501, 491–511. DOI logoGoogle Scholar
Crinion, J., Turner, R., Grogan, A., Hanakawa, T., Noppeney, U., Devlin, J. T., Aso, T., Urayama, S., Fukuyama, H., Stockton, K., Usui, K., Green, D. W., & Price, C. J.
(2006) Language control in the bilingual brain. Science, 312(5779), 1537–1540. DOI logoGoogle Scholar
De Diego-Balaguer, R., Couette, M., Dolbeau, G., Dürr, A., Youssov, K., & Bachoud-Lévi, A. C.
(2008) Striatal degeneration impairs language learning: Evidence from Huntington’s disease. Brain, 131(11), 2870–2881. DOI logoGoogle Scholar
De Pisapia, N., & Braver, T. S.
(2006) A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing, 69(10–12), 1322–1326. DOI logoGoogle Scholar
Domínguez D, J. F., Poudel, G., Stout, J. C., Gray, M., Chua, P., Borowsky, B., Egan, G. F., & Georgiou-Karistianis, N.
(2017) Longitudinal changes in the fronto-striatal network are associated with executive dysfunction and behavioral dysregulation in Huntington’s disease: 30 months IMAGE-HD data. Cortex, 921, 139–149. DOI logoGoogle Scholar
Fabbro, F., Skrap, M., & Aglioti, S.
(2000) Pathological switching between languages after frontal lesions in a bilingual patient. Journal of Neurology, Neurosurgery, and Psychiatry, 68(5), 650–652. DOI logoGoogle Scholar
Fink, A., & Goldrick, M.
(2015) Pervasive benefits of preparation in language switching. Psychonomic Bulletin and Review, 22(3), 808–814. DOI logoGoogle Scholar
Forster, K. I., & Forster, J. C.
(2003) DMDX: a windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers : A Journal of the Psychonomic Society, Inc, 35(1), 116–124. DOI logoGoogle Scholar
Garcia-Caballero, A., Garcia-Lado, I., Gonzalez-Hermida, J., Area, R., Recimil, M. J., Juncos Rabadan, O., Lamas, S., Ozaita, G., & Jorge, F. J.
(2007) Paradoxical recovery in a bilingual patient with aphasia after right capsuloputaminal infarction. Journal of Neurology, Neurosurgery, and Psychiatry, 78(1), 89–91. DOI logoGoogle Scholar
Georgiou-Karistianis, N., Gray, M. A., Domínguez D, J. F., Dymowski, A. R., Bohanna, I., Johnston, L. A., Churchyard, A., Chua, P., Stout, J. C., & Egan, G. F.
(2013) Automated differentiation of pre-diagnosis Huntington’s disease from healthy control individuals based on quadratic discriminant analysis of the basal ganglia: The IMAGE-HD study. Neurobiology of Disease, 511, 82–92. DOI logoGoogle Scholar
Green, D. W.
(1986) Control, activation, and resource: a framework and a model for the control of speech in bilinguals. Brain and Language, 27(2), 210–223. DOI logoGoogle Scholar
Green, D. W.
(1998) Mental control of the bilingual lexico-semantic system. Bilingualism:Language and Cognition, 11, 67–81. DOI logoGoogle Scholar
Hervais-Adelman, A. G., Moser-Mercer, B., & Golestani, N.
(2011) Executive control of language in the bilingual brain: Integrating the evidence from neuroimaging to neuropsychology. Frontiers in Psychology, 21: 234. DOI logoGoogle Scholar
Hinzen, W., Rosselló, J., Morey, C., Camara, E., Garcia-Gorro, C., Salvador, R., & de Diego-Balaguer, R.
(2017) A systematic linguistic profile of spontaneous narrative speech in pre-symptomatic and early stage Huntington’s disease. Cortex, 1001, 71–83. DOI logoGoogle Scholar
Kargieman, L., Herrera, E., Baez, S., García, A. M., Dottori, M., Gelormini, C., Manes, F., Gershanik, O., & Ibáñez, A.
(2014) Motor-language coupling in Huntington’s disease families. Frontiers in Aging Neuroscience, 61: 122. DOI logoGoogle Scholar
Kieburtz, K.
(1996) Unified Huntington’s disease rating scale: Reliability and consistency. Movement Disorders, 11(2), 136–142. DOI logoGoogle Scholar
Kong, A. P. H., Abutalebi, J., Lam, K. S. Y., & Weekes, B.
(2014) Executive and language control in the multilingual brain. Behavioural Neurology 2014 DOI logoGoogle Scholar
Lawrence, A. D., Sahakian, B. J., & Robbins, T. W.
(1998) Cognitive functions and corticostriatal circuits: Insights from Huntington’s disease. Trends in Cognitive Sciences, 2(10), 379–388. DOI logoGoogle Scholar
Leemann, B., Laganaro, M., Schwitter, V., & Schnider, A.
(2007) Paradoxical switching to a barely-mastered second language by an aphasic patient. Neurocase, 13(3), 209–213. DOI logoGoogle Scholar
Lemiere, J., Decruyenaere, M., Evers-Kiebooms, G., Vandenbussche, E., & Dom, R.
(2004) Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation. Journal of Neurology, 251(8), 935–942. DOI logoGoogle Scholar
Luk, G., Green, D. W., Abutalebi, J., & Grady, C.
(2011) Cognitive control for language switching in bilinguals: A quantitative meta-analysis of functional neuroimaging studies. Language and Cognitive Processes, 27(10), 1479–1488. DOI logoGoogle Scholar
Ma, F., Li, S., & Guo, T.
(2016) Reactive and proactive control in bilingual word production: An investigation of influential factors. Journal of Memory and Language, 861, 35–59. DOI logoGoogle Scholar
Mariën, P., Abutalebi, J., Engelborghs, S., & De Deyn, P. P.
(2005) Pathophysiology of language switching and mixing in an early bilingual child with subcortical aphasia. Neurocase, 11 (6), 385–398. DOI logoGoogle Scholar
Maurage, P., Heeren, A., Lahaye, M., Jeanjean, A., Guettat, L., Verellen-Dumoulin, C., Halkin, S., Billieux, J., & Constant, E.
(2017) Attentional impairments in Huntington’s Disease: A specific deficit for the executive conflict. Neuropsychology, 31(4), 424–436. DOI logoGoogle Scholar
Montoya, A., Price, B. H., Menear, M., & Lepage, M.
(2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. Journal of Psychiatry and Neuroscience, 31(1), 21–29.Google Scholar
Mosca, M., & Clahsen, H.
(2016) Examining language switching in bilinguals: The role of preparation time. Bilingualism, 19(2), 415–424. DOI logoGoogle Scholar
Paulsen, J. S., Long, J. D., Ross, C. A., Harrington, D. L., Erwin, C. J., Williams, J. K., et al.
(2014) Prediction of manifest huntington’s disease with clinical and imaging measures: A prospective observational study. The Lancet Neurology, 13(12), 1193–1201. DOI logoGoogle Scholar
Peavy, G. M., Jacobson, M. W., Goldstein, J. L., Hamilton, J. M., Kane, A., Gamst, A. C., Lessing, S. L., Lee, J. C., & Corey-Bloom, J.
(2010) Cognitive and functional decline in Huntington’s disease: Dementia criteria revisited. Movement Disorders, 25(9), 1163–1169. DOI logoGoogle Scholar
Peinemann, A., Schuller, S., Pohl, C., Jahn, T., Weindl, A., & Kassubek, J.
(2005) Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: A neuropsychological and voxel-based morphometric study. Journal of the Neurological Sciences, 239(1), 11–19. DOI logoGoogle Scholar
Philipp, A. M., Gade, M., & Koch, I.
(2007) Inhibitory processes in language switching: Evidence from switching language-defined response sets. European Journal of Cognitive Psychology, 19(3), 395–416. DOI logoGoogle Scholar
Pliatsikas, C., & Luk, G.
(2016) Executive control in bilinguals: A concise review on fMRI studies. Bilingualism: Language and Cognition, 53(9), 1689–1699.Google Scholar
Protopapas, A.
(2007) CheckVocal: a program to facilitate checking the accuracy and response time of vocal responses from DMDX. Behavior Research Methods, 39(4), 859–862. DOI logoGoogle Scholar
Rao, J. A., Harrington, D. L., Durgerian, S., Reece, C., Mourany, L., Koenig, K., Lowe, M. J., Magnotta, V. A., Long, J. D., Johnson, H. J., Paulsen, J. S., & Rao, S. M.
(2014) Disruption of response inhibition circuits in prodromal Huntington disease. Cortex, 581, 72–85. DOI logoGoogle Scholar
Rosas, H. D., Tuch, D. S., Hevelone, N. D., Zaleta, A. K., Vangel, M., Hersch, S. M., & Salat, D. H.
(2006) Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Movement Disorders, 21(9), 1317–1325. DOI logoGoogle Scholar
Seo, R., Stocco, A., & Prat, C. S.
(2018) The bilingual language network: Differential involvement of anterior cingulate, basal ganglia and prefrontal cortex in preparation, monitoring, and execution. NeuroImage, 1741, 44–56. DOI logoGoogle Scholar
Shoulson, I., Kurlan, R., Rubin, R. J., Goldblatt, D., Behr, J., & Al, E.
(1989) Assessment of functional capacity in neurodegenerative movement disorders: Huntington’s disease as a prototype. in Quantification of Neurologic Deficit, T. Munsat (Ed.), Butterworths, Stoneham, MA., 271–283.Google Scholar
Skodda, S., Grönheit, W., Lukas, C., Bellenberg, B., Von Hein, S. M., Hoffmann, R., & Saft, C.
(2016) Two different phenomena in basic motor speech performance in premanifest Huntington disease. Neurology, 86(14), 1329–1335. DOI logoGoogle Scholar
Smith, M. A., & Shadmehr, R.
(2000) Error correction and the basal ganglia. Trends in Cognitive Sciences, 4(10), 367–369. DOI logoGoogle Scholar
Stout, J. C., Paulsen, J. S., Queller, S., Solomon, A. C., Whitlock, K. B., Campbell, J. C., Carlozzi, N., Duff, K., Beglinger, L. J., Langbehn, D. R., Johnson, S. A., Biglan, K. M., & Aylward, E. H.
(2011) Neurocognitive Signs in Prodromal Huntington Disease. Neuropsychology, 25(1), 1–14. DOI logoGoogle Scholar
Tabrizi, S. J., Scahill, R. I., Owen, G., Durr, A., Leavitt, B. R., Roos, R. A., et al.
(2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: Analysis of 36-month observational data. The Lancet Neurology, 12(7), 637–649. DOI logoGoogle Scholar
Teichmann, M., Darcy, I., Bachoud-Lévi, A. C., & Dupoux, E.
(2009) The role of the striatum in phonological processing. Evidence from early stages of Huntington’s disease. Cortex, 45(7), 839–849. DOI logoGoogle Scholar
Teichmann, M., Dupoux, E., Cesaro, P., & Bachoud-Lévi, A. C.
(2008) The role of the striatum in sentence processing: Evidence from a priming study in early stages of Huntington’s disease. Neuropsychologia, 46(1), 174–185. DOI logoGoogle Scholar
Teichmann, M., Gaura, V., Démonet, J. F., Supiot, F., Delliaux, M., Verny, C., Renou, P., Remy, P., & Bachoud-Lévi, A. C.
(2008) Language processing within the striatum: Evidence from a PET correlation study in Huntington’s disease. Brain, 131(4), 1046–1056. DOI logoGoogle Scholar
Thompson, J. C., Poliakoff, E., Sollom, A. C., Howard, E., Craufurd, D., & Snowden, J. S.
(2010) Automaticity and attention in Huntington’s disease: When two hands are not better than one. Neuropsychologia, 48(1), 171–178. DOI logoGoogle Scholar
Ullman, M. T., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W. J., & Pinker, S.
(1997) A Neural Dissociation within Language: Evidence that the Mental Dictionary Is Part of Declarative Memory, and that Grammatical Rules Are Processed by the Procedural System. Journal of Cognitive Neuroscience, 9(2), 266–276. DOI logoGoogle Scholar
Vandenberghe, W., Demaerel, P., Dom, R., & Maes, F.
(2009) Diffusion-weighted versus volumetric imaging of the striatum in early symptomatic Huntington disease. Journal of Neurology, 256(1), 109–114. DOI logoGoogle Scholar
Vandervert, L.
(2016) The prominent role of the cerebellum in the learning, origin and advancement of culture. Cerebellum & Ataxias, 3(1), 10. DOI logoGoogle Scholar
Verhoef, K., Roelofs, A., & Chwilla, D. J.
(2009) Role of inhibition in language switching: Evidence from event-related brain potentials in overt picture naming. Cognition, 110(1), 84–99. DOI logoGoogle Scholar
Wang, X., Wang, Y. Y., Jiang, T., Wang, Y. Z., & Wu, C. X.
(2012) Direct evidence of the left caudate’s role in bilingual control: An intraoperative electrical stimulation study. Neurocase, 19(5), 462–469. DOI logoGoogle Scholar
Yang, J., Ye, J., Wang, R., Zhou, K., & Wu, Y. J.
(2018) Bilingual Contexts Modulate the Inhibitory Control Network. Frontiers in Psychology, 91, 395. DOI logoGoogle Scholar
You, S. C., Geschwind, M. D., Sha, S. J., Apple, A., Satris, G., Wood, K. A., Possin, K. L.
(2014) Executive functions in premanifest Huntington’s disease. Movement Disorders, 29(3), 405–409. DOI logoGoogle Scholar
Zou, L., Ding, G., Abutalebi, J., Shu, H., & Peng, D.
(2016) Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48(9), 1197–1206. DOI logoGoogle Scholar
Cited by

Cited by 2 other publications

Calabria, Marco, Nicholas Grunden, Federica Iaia & Carmen García-Sánchez
2020. Interference and facilitation in phonological encoding: Two sides of the same coin? Evidence from bilingual aphasia. Journal of Neurolinguistics 56  pp. 100935 ff. DOI logo
Pliatsikas, Christos, Ana Inés Ansaldo & Toms Voits
2020. Bilingualism and the declining brain. Linguistic Approaches to Bilingualism DOI logo

This list is based on CrossRef data as of 15 june 2021. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.