Chapter 4
VisMet and the crowd
What social tagging reveals about visual metaphors
This chapter describes the data collection and analysis related to a new digital resource soon to be added to the VisMet 1.0 corpus of visual metaphor (
http://www.vismet.org/VisMet/, Bolognesi, van den Heerik, van den Berg, 2018), consisting of crowdsourced tags. Tags are keywords used by online coders, non-expert of metaphors, to annotate and describe the images to which they were exposed, for different amounts of seconds.
The semantic information retrieved through this Social tagging
experiment allows us to explore the type of information that users extract from visual metaphors, in a setting that better resembles the natural environment in which these images are usually experienced (i.e., for very limited amounts of seconds). We hereby provide methodological guidelines on this innovative procedure and report the results of our data collection and content analysis in which we manually classified the type of semantic information encoded in the tags.
Article outline
- 1.Introduction
- 2.Theoretical background
- 2.1Tags as traces of human behavior
- 2.2Visual metaphor comprehension and interpretation
- 3.Method
- 3.1Crowdsourcing tags
- 3.2Classifying tags
- 4.Analysis
- 4.1Crowdsourcing tags
- 4.2Classifying tags
- 5.Discussion
- 6.Conclusions
-
Notes
-
References
References (34)
References
Ames, M., & Naaman, M. (2007). Why we tag: motivations for annotation in mobile and online media. In Proceedings of the SIGCHI conference 2007 (pp. 971–980). New York: ACM.
Aroyo, L., & Welty, C. (2014). The three sides Crowd Truth. Human Computation, 1(1), 31–44.
Artstein, R., & Poesio, M. (2008). Inter-coder agreement for computational linguistics. Computational Linguistics, 34, 555–596.
Bolognesi, M. (2016). Flickr distributional tagspace: Evaluating the semantic spaces emerging from flickr tags distributions. In M. Jones (Ed.), Big data in cognitive science (pp. 144–173). New York: Routledge.
Bolognesi, M. (2017a). Conceptual metaphors and metaphorical expressions in images. In A. Baicchi, & E. Pinelli (Eds.), Cognitive modelling in language and discourse across cultures (pp. 367–383). Cambridge: Cambridge Scholars.
Bolognesi, M. (2017b). Using semantic feature norms to investigate how the visual and verbal modes afford metaphor construction and expression. Language and Cognition 9(3), 525–552.
Bolognesi, M., Pilgram R., & Van den Heerik R. (2017). Reliability in semantic categorization: The case of semantic feature norms classification. Behavior Research Methods 49(6), 1984–2001.
Bolognesi, M., van den Heerik, R., & van den Berg, E. (2018). VisMet: an online corpus of visual metaphors. In G. J. Steen (Ed.) , Visual metaphor: Structure and process (pp. 89–117). Amsterdam: John Benjamins Publishing Company.
Cattuto, C., Barrat, A., Baldassarri, A., Schehr, G., & Loreto, V. (2009). Collective dynamics of social annotation. PNAS, 106(26), 10511–10515.
El Refaie, E. (2003). Understanding visual metaphors: The example of newspaper cartoons. Visual Communication, 2, 75–95.
Forceville, C. (1996). Pictorial metaphors in advertising. London: Routledge.
Forceville, C., & Urios-Aparisi, E. (Eds.). (2009). Multimodal metaphor. Berlin: Mouton de Gruyter.
Heckner, M., Heilemann, M., & Wolff, C. (2009). Personal information management vs. resource sharing: Towards a model of information behaviour in social tagging systems.
Proceedings of the Third international AAAI conference on weblogs and social media (ICWSM)
(pp. 42–49).
Jones, M. N. (Ed.). (2016). Big data in cognitive science. New York: Taylor and Francis Psychology Press.
Kremer, G., & Baroni, M. (2011). A set of semantic norms for German and Italian. Behavior Research Methods, 43, 97–109.
Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.
Le Pair, R., & Van Mulken, M. (2010). Effects of verbal anchoring in visual metaphors on perceived complexity and appreciation. In A. V. Prokhorov (Ed.), Topical issues of advertising: Theory and practice (Vol. II, pp. 26–36). Tambov: TSU.
Leder, H., Belke, B., Oeberst, A., & Augustin, D. (2004). A model of aesthetic appreciation and aesthetic judgments. British Journal of Psychology, 95, 489–508.
Marlow, C., Naaman, M., Boyd, D., & Davis, M. (2006). HT06, Tagging Paper, Taxonomy, Flickr, Academic Article, ToRead.
Proceedings of the seventeenth conference on hypertext and hypermedia
(pp. 31–40).
McRae, K., Cree, G., Seidenberg, M., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavioral Research Methods, 37, 547–559.
Nov, O., Naaman, M., & Ye, C. (2009). Motivational, structural and tenure factors that impact online community photo sharing.
Proceedings of AAAI international conference on weblogs and social media (ICWSM 2009)
.
Phillips, B., & McQuarrie, E. (2004). Beyond visual metaphor: A new typology of visual rhetoric in advertising. Marketing Theory, 4, 113–136.
Poesio, M. (2004). Discourse annotation and semantic annotation in the GNOME corpus.
Proceedings of the 2004 ACL workshop on discourse annotation
(pp. 72–79).
Recchia, G., & Jones, M. N. (2012). The semantic richness of abstract concepts. Frontiers in Human Neuroscience, 6, 315.
Schilperoord, J. (2018). Ways with pictures, visual incongruities and metaphor. In G. J. Steen (Ed.), Visual metaphor: Structure and process. Amsterdam: John Benjamins Publishing Company.
Steen, G. J. (2008). The paradox of metaphor: Why we need a three-dimensional model of metaphor. Metaphor and Symbol, 23(4), 213–241.
Strohmaier M., Körner, C., & Kern, R. (2012). Understanding why users tag: A survey of tagging motivation literature and results from an empirical study. Web Semantics, 17, 1–11.
Van Hooft, A., van Mulken, M., & Nedergist, U. (2013). Cultural differences? Visual metaphor in advertising: Comprehension and tolerance in ambiguity in four European countries. In S. Rosengren, M. Dahlén, & S. Okazaki (Eds.), Advances in advertising research (Vol. IV, pp. 351–364). Wiesbaden: Springer Gabler.
Van Mulken, M., Le Pair, R., & Forceville, C. (2010). The impact of perceived complexity, deviation and comprehension on the appreciation of visual metaphor in advertising across three European countries. Journal of Pragmatics, 42, 3418–3430.
Van Weelden, L., Maes, A., Schilperoord, J., & Swerts, M. (2012). How object shape affects visual metaphor processing. Experimental Psychology, 59(6), 364–371.
Cited by (1)
Cited by one other publication
Poppi, Fabio I. M., Marianna Bolognesi & Amitash Ojha
2020.
Imago Dei: Metaphorical conceptualization of pictorial artworks within a participant-based framework.
Semiotica 2020:236-237
► pp. 349 ff.
This list is based on CrossRef data as of 5 july 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.