Article published In:
The Mental Lexicon
Vol. 17:1 (2022) ► pp.76103
References (88)
References
Amenta, S., Crepaldi, D., & Marelli, M. (2020). Consistency measures individuate dissociating semantic modulations in priming paradigms: A new look on semantics in the processing of (complex) words. Quarterly Journal of Experimental Psychology, 1747021820927663. DOI logoGoogle Scholar
Anderson, S. R. (1992). A-morphous morphology. Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Andrews, S. & Lo, S. (2013). Is morphological priming stronger for transparent than opaque words? it depends on individual differences in spelling and vocabulary. Journal of Memory and Language, 68 (3), 279–296. DOI logoGoogle Scholar
Aronoff, M. (1994). Morphology by Itself: Stems and Inflectional Classes. Cambridge, Mass.: The MIT Press.Google Scholar
Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., & Blevins, J. P. (2019). The discriminative lexicon: A unified computational model for the lexicon and lexical processing in comprehension and production grounded not in (de) composition but in linear discriminative learning. Complexity, 2019. DOI logoGoogle Scholar
Baayen, R. H., Davidson, D. J., & Bates, D. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59 1, 390–412. DOI logoGoogle Scholar
Baayen, R. H., Milin, P., Filipovic Durdjevic, D., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118 (3), 438–481. DOI logoGoogle Scholar
Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX lexical database (CD-ROM). University of Pennsylvania, Philadelphia, PA: Linguistic Data Consortium.Google Scholar
Baayen, R. H. & Smolka, E. (2020). Modeling morphological priming in german with naive discriminative learning. Frontiers in Communication, 5 1, 17. DOI logoGoogle Scholar
Baayen, R. H., Vasishth, S., Bates, D., & Kliegl, R. (2017). The cave of shadows. addressing the human factor with generalized additive mixed models. Journal of Memory and Language, 56 1, 206–234. DOI logoGoogle Scholar
Baayen, R. H., Wurm, L. H., & Aycock, J. (2007). Lexical dynamics for low-frequency complex words. a regression study across tasks and modalities. The Mental Lexicon, 2 1, 419–463. DOI logoGoogle Scholar
Beard, R. (1995). Lexeme-morpheme base morphology: A general theory of inflection and word formation. Albany, NY.: State University of New York Press.Google Scholar
Bell, M. J. & Schäfer, M. (2016). Modelling semantic transparency. Morphology, 26 (2), 157–199. DOI logoGoogle Scholar
Beyersmann, E., Ziegler, J. C., Castles, A., Coltheart, M., Kezilas, Y., & Grainger, J. (2016). Morpho-orthographic segmentation without semantics. Psychonomic Bulletin & Review, 23 (2), 533–539. DOI logoGoogle Scholar
Blevins, J. P. (2016). Word and paradigm morphology. Oxford University Press. DOI logoGoogle Scholar
Booij, G. (2010). Construction morphology. Language and linguistics compass, 4 (7), 543–555. DOI logoGoogle Scholar
Booij, G. E. (1996). Inherent versus contextual inflection and the split morphology hypothesis. In G. E. Booij & J. v. Marle (Eds.), Yearbook of Morphology 1995 (pp. 1–16). Dordrecht: Kluwer Academic Publishers. DOI logoGoogle Scholar
Clahsen, H. & Felser, C. (2006). Grammatical processing in language learners. Applied psycholinguistics, 27 (1), 3. DOI logoGoogle Scholar
Clahsen, H., Felser, C., Neubauer, K., Sato, M., & Silva, R. (2010). Morphological structure in native and nonnative language processing. Language Learning, 60 (1), 21–43. DOI logoGoogle Scholar
Coughlin, C. E. & Tremblay, A. (2015). Morphological decomposition in native and non-native french speakers. Bilingualism: Language and Cognition, 18 (3), 524–542. DOI logoGoogle Scholar
Crepaldi, D., Amenta, S., & Marelli, M. (2019). For a probabilistic and multidisciplinary approach to the investigation of morphological processing. Cortex, 116 1. DOI logoGoogle Scholar
Davies, M. (2010). The Corpus of Contemporary American English as the first reliable monitor corpus of English. Literary and Linguistic Computing, 25 (4), 447–464. DOI logoGoogle Scholar
Davis, C. P., Libben, G., & Segalowitz, S. J. (2019). Compounding matters: Event-related potential evidence for early semantic access to compound words. Cognition, 184 1, 44–52. DOI logoGoogle Scholar
De Jong, N. H., Schreuder, R., & Baayen, R. H. (2003). Morphological resonance in the mental lexicon. In R. H. Baayen & R. Schreuder (Eds.), Morphological structure in language processing (pp. 65–88). Berlin: Mouton de Gruyter. DOI logoGoogle Scholar
Diependaele, K., Duñabeitia, J. A., Morris, J., & Keuleers, E. (2011). Fast morphological effects in first and second language word recognition. Journal of Memory and Language, 64 (4), 344–358. DOI logoGoogle Scholar
Diependaele, K., Sandra, D., & Grainger, J. (2009). Semantic transparency and masked morphological priming: The case of prefixed words. Memory & Cognition, 37 (6), 895–908. DOI logoGoogle Scholar
Diessel, H. (2019). The grammar network. Cambridge University Press. DOI logoGoogle Scholar
Dijkstra, T. & van Heuven, W. J. (2018). Visual word recognition in multilinguals. The Oxford handbook of psycholinguistics, 118–143.Google Scholar
Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R., & Goude, Y. (2020). Fast calibrated additive quantile regression. Journal of the American Statistical Association, 1–11.Google Scholar
Feldman, L. B. (1994). Beyond orthography and phonology: Differences between inflections and derivations. Journal of Memory and Language, 33 (4), 442–470. DOI logoGoogle Scholar
Feldman, L. B. & Basnight-Brown, D. M. (2008). List context fosters semantic processing: Parallels between semantic and morphological facilitation when primes are forward masked. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34 (3), 680.Google Scholar
Feldman, L. B., O’Connor, P. A., & Moscoso del Prado Martin, F. (2009). Early morphological processing is morpho-semantic and not simply morpho-orthographic: evidence from the masked priming paradigm. Psychonomic Bulletin & Review, 16 (4), 684–691. DOI logoGoogle Scholar
Forster, K. & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10 (4), 680–698. DOI logoGoogle Scholar
Giraudo, H. & Grainger, J. (2001). Priming complex words: Evidence for supralexical representation of morphology. Psychonomic Bulletin and Review, 8 1, 127–131. DOI logoGoogle Scholar
Gonnerman, L. M., Seidenberg, M. S., & Andersen, E. S. (2007). Graded semantic and phonological similarity effects in priming: Evidence for a distributed connectionist approach to morphology. Journal of Experimental Psychology: General, 136 (2), 323. DOI logoGoogle Scholar
Günther, F., Petilli, M. A., & Marelli, M. (2020). Semantic transparency is not invisibility: A computational model of perceptually-grounded conceptual combination in word processing. Journal of Memory and Language, 112 1, 104104. DOI logoGoogle Scholar
Hasenäcker, J., Beyersmann, E., & Schroeder, S. (2016). Masked morphological priming in German-speaking adults and children: Evidence from response time distributions. Frontiers in Psychology, 7 1, 929. DOI logoGoogle Scholar
Hauk, O., Davis, M., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. (2006). The time course of visual word recognition as revealed by linear regression analysis of ERP data. NeuroImage, 30 1, 1383–1400. DOI logoGoogle Scholar
Heathcote, L., Nation, K., Castles, A., & Beyersmann, E. (2018). Do ‘blacheap’ and ‘subcheap’ both prime ‘cheap’? an investigation of morphemic status and position in early visual word processing. Quarterly Journal of Experimental Psychology, 71 (8), 1645–1654. DOI logoGoogle Scholar
Hendrix, P. & Sun, C. C. (2020). The role of information theory for compound words in Mandarin Chinese and English. Cognition, 205 1, 104389. DOI logoGoogle Scholar
Heyer, V. & Clahsen, H. (2015). Late bilinguals see a scan in scanner and in scandal: dissecting formal overlap from morphological priming in the processing of derived words. Bilingualism: Language and Cognition, 18 (3), 543–550. DOI logoGoogle Scholar
Jacob, G., Heyer, V., & Veríssimo, J. (2018). Aiming at the same target: A masked priming study directly comparing derivation and inflection in the second language. International Journal of Bilingualism, 22 (6), 619–637. DOI logoGoogle Scholar
Jared, D., Jouravlev, O., & Joanisse, M. F. (2017). The effect of semantic transparency on the processing of morphologically derived words: Evidence from decision latencies and event-related potentials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43 (3), 422.Google Scholar
Järvikivi, J. & Pyykkönen, P. (2011). Sub-and supralexical information in early phases of lexical access. Frontiers in Psychology, 2 1. DOI logoGoogle Scholar
Jiang, N. (2000). Lexical representation and development in a second language. Applied linguistics, 21 (1), 47–77. DOI logoGoogle Scholar
Kazanina, N. (2011). Decomposition of prefixed words in russian. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37 (6), 1371.Google Scholar
Kuperman, V. (2013). Accentuate the positive: Semantic access in English compounds. Frontiers in Psychology, 4 1. DOI logoGoogle Scholar
Kuperman, V., Schreuder, R., Bertram, R., & Baayen, R. H. (2009). Reading of multimorphemic Dutch compounds: Towards a multiple route model of lexical processing. Journal of Experimental Psychology: HPP, 35 1, 876–895.Google Scholar
Lemhöfer, K., Dijkstra, T., Schriefers, H., Baayen, R. H., Grainger, J., & Zwitserlood, P. (2008). Native language influences on word recognition in a second language: A megastudy. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34 (1), 12.Google Scholar
Leminen, A., Smolka, E., Dunabeitia, J. A., & Pliatsikas, C. (2019). Morphological processing in the brain: The good (inflection), the bad (derivation) and the ugly (compounding). Cortex, 116 1, 4–44. DOI logoGoogle Scholar
Libben, G. (2006). Why study compound processing? an overview of the issues. The representation and processing of compound words, 1–22.Google Scholar
Longtin, C., Segui, J., & Hallé, P. (2003). Morphological priming without morphological relationship. Language and Cognitive Processes, 18 (3), 313–334. DOI logoGoogle Scholar
Lõo, K. & Järvikivi, J. (2019). Whole-word frequency effects in English masked priming: very little CORN in CORNER and CORNET. Proceedings of The 11th International Conference on the Mental Lexicon, 1 1, e072.Google Scholar
Lõo, K., Järvikivi, J., & Baayen, R. H. (2018). Whole-word frequency and inflectional paradigm size facilitate Estonian case-inflected noun processing. Cognition, 175 1, 20–25. DOI logoGoogle Scholar
Lõo, K., Järvikivi, J., Tomaschek, F., Tucker, B. V., & Baayen, R. H. (2018). Production of estonian case-inflected nouns shows whole-word frequency and paradigmatic effects. Morphology, 28 1, 71–97. DOI logoGoogle Scholar
Mandera, P., Keuleers, E., & Brysbaert, M. (2017). Explaining human performance in psycholinguistic tasks with models of semantic similarity based on prediction and counting: A review and empirical validation. Journal of Memory and Language, 92 1, 57–78. DOI logoGoogle Scholar
Manelis, L. & Tharp, D. A. (1977). The processing of affixed words. Memory and Cognition, 5 1, 690–695. DOI logoGoogle Scholar
Marelli, M. & Amenta, S. (2018). A database of orthography-semantics consistency (osc) estimates for 15,017 english words. Behavior Research Methods, 50 (4), 1482–1495. DOI logoGoogle Scholar
Marelli, M. & Baroni, M. (2015). Affixation in semantic space: Modeling morpheme meanings with compositional distributional semantics. Psychological Review, 122 (3), 485. DOI logoGoogle Scholar
Marzi, C., Blevins, J. P., Booij, G., & Pirrelli, V. (2020). Inflection at the morphology-syntax interface. Word Knowledge and Word Usage, 2281. DOI logoGoogle Scholar
McDonald, J. L. (2006). Beyond the critical period: Processing-based explanations for poor grammaticality judgment performance by late second language learners. Journal of Memory and Language, 55 (3), 381–401. DOI logoGoogle Scholar
Morris, J., Frank, T., Grainger, J., & Holcomb, P. J. (2007). Semantic transparency and masked morphological priming: An ERP investigation. Psychophysiology, 44 (4), 506–521. DOI logoGoogle Scholar
Moscoso del Prado Martín, F., Bertram, R., Häikiö, T., Schreuder, R., & Baayen, R. H. (2004). Morphological family size in a morphologically rich language: The case of Finnish compared to Dutch and Hebrew. Journal of Experimental Psychology: Learning, Memory and Cognition, 30 1, 1271–1278.Google Scholar
Mulder, K., Dijkstra, T., & Baayen, R. H. (2015). Cross-language activation of morphological relatives in cognates: The role of orthographic overlap and task-related processing. Frontiers in Human Neuroscience, 9 1, 16. DOI logoGoogle Scholar
Mulder, K., Dijkstra, T., Schreuder, R., & Baayen, R. H. (2014). Effects of primary and secondary morphological family size in monolingual and bilingual word processing. Journal of Memory and Language, 72 1, 59–84. DOI logoGoogle Scholar
Norris, D. & Kinoshita, S. (2008). Perception as evidence accumulation and bayesian inference: Insights from masked priming. Journal of Experimental Psychology, 137 (3), 434–455. DOI logoGoogle Scholar
Plaut, D. C. & Gonnerman, L. M. (2000). Are non-semantic morphological effects incompatible with a distributed connectionist approach to lexical processing? Language and Cognitive Processes, 15 (4/5), 445–485. DOI logoGoogle Scholar
Rastle, K. & Davis, M. H. (2008). Morphological decomposition based on the analysis of orthography. Language and Cognitive Processes, 23 (7–8), 942–971. DOI logoGoogle Scholar
Rastle, K., Davis, M. H., & New, B. (2004). The broth in my brother’s brothel: Morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin & Review, 11 1, 1090–1098. DOI logoGoogle Scholar
Raveh, M. (2002). The contribution of frequency and semantic similarity to morphological processing. Brain and Language. DOI logoGoogle Scholar
Reingold, E. M., Reichle, E. D., Glaholt, M. G., & Sheridan, H. (2012). Direct lexical control of eye movements in reading: Evidence from a survival analysis of fixation durations. Cognitive psychology, 65 (2), 177–206. DOI logoGoogle Scholar
Sánchez-Gutiérrez, C. H., Mailhot, H., Deacon, S. H., & Wilson, M. A. (2018). Morpholex: A derivational morphological database for 70,000 English words. Behavior Research Methods, 50 (4), 1568–1580. DOI logoGoogle Scholar
Schmidtke, D. & Kuperman, V. (2019). A paradox of apparent brainless behavior: The time-course of compound word recognition. Cortex, 116 1, 250–267. DOI logoGoogle Scholar
Schmidtke, D., Matsuki, K., & Kuperman, V. (2017). Surviving blind decomposition: A distributional analysis of the time-course of complex word recognition. Journal of Experimental Psychology. Learning, Memory, and Cognition, 43 (11), 1793–1820. DOI logoGoogle Scholar
Schreuder, R. & Baayen, R. H. (1995). Modeling morphological processing. In L. B. Feldman (Ed.), Morphological Aspects of Language Processing (pp. 131–154). Hillsdale, New Jersey: Lawrence Erlbaum.Google Scholar
(1997). How complex simplex words can be. Journal of Memory and Language, 37 1, 118–139. DOI logoGoogle Scholar
Silva, R. & Clahsen, H. (2008). Morphologically complex words in L1 and L2 processing: Evidence from masked priming experiments in English. Bilingualism: Language and Cognition, 11 (2), 245–260. DOI logoGoogle Scholar
Taft, M. (2004). Morphological decomposition and the reverse base frequency effect. The Quarterly Journal of Experimental Psychology, 57A 1, 745–765. DOI logoGoogle Scholar
Taft, M. & Forster, K. I. (1975). Lexical storage and retrieval of prefixed words. Journal of Verbal Learning and Verbal Behavior, 14 1, 638–647. DOI logoGoogle Scholar
Tanenhaus, M., Spivey-Knowlton, M., Eberhard, K., & Sedivy, J. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268 1, 1632–1634. DOI logoGoogle Scholar
Traxler, M. J. (2014). Trends in syntactic parsing: Anticipation, bayesian estimation, and good-enough parsing. Trends in Cognitive Sciences, 18 (11), 605–611. DOI logoGoogle Scholar
Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., & Sims, M. (2019). The massive auditory lexical decision (MALD) database. Behavior Research Methods, 51 (3), 1187–1204. DOI logoGoogle Scholar
Tzur, B. & Frost, R. (2007). SOA does not reveal the absolute time course of cognitive processing in fast priming experiments. Journal of Memory and Language, 56 (3), 321–335. DOI logoGoogle Scholar
Ulicheva, A., Harvey, H., Aronoff, M., & Rastle, K. (2020). Skilled readers’ sensitivity to meaningful regularities in English writing. Cognition, 195 1, 103810. DOI logoGoogle Scholar
van Rij, J., Baayen, R. H., Wieling, M., & van Rijn, H. (2016). itsadug: Interpreting time series, autocorrelated data using GAMMs. R package version 2.2.Google Scholar
Viviani, E. & Crepaldi, D. (2019). Masked morphological priming tracks the development of a fully mature lexical system in L2. DOI logoGoogle Scholar
Voga, M., Anastassiadis-Symeonidis, A., & Giraudo, H. (2014). Does morphology play a role in L2 processing?: Two masked priming experiments with Greek speakers of ESL. Lingvisticae Investigationes, 37 (2), 338–352. DOI logoGoogle Scholar
Wood, S. N. (2017). Generalized additive models: an introduction with R. CRC press. DOI logoGoogle Scholar
Cited by (1)

Cited by one other publication

Marzi, Claudia & Vito Pirrelli
2023. A discriminative information-theoretical analysis of the regularity gradient in inflectional morphology. Morphology 33:4  pp. 459 ff. DOI logo

This list is based on CrossRef data as of 5 july 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.