Review published in:
Metaphor and the Social World
Vol. 9:1 (2019) ► pp. 131138
References

References

Barnden, J.
(2006) Artificial intelligence, figurative language and cognitive linguistics. In G. Kristiansen, M. Achard, R. Dirven, & F. J. Ruiz de Mendoza Ibáñez (Eds.), Cognitive linguistics: Current applications and future perspectives (pp. 431–459). Berlin: Mouton de Gruyter. CrossrefGoogle Scholar
Barnden, J., & Lee, M.
(2002) An artificial intelligence approach to metaphor understanding. Theoria et Historia Scientiarum, 6(1), 399–412. CrossrefGoogle Scholar
Beigman Klebanov, B., Wee Leong, C., Heilman, M., & Flor, M.
(2014) Different texts, same metaphors: Unigrams and beyond. In B. Beigman Klebanov, E. Shutova, & P. Lichtenstein (Eds.), Proceedings of the 2nd Workshop on Metaphor in NLP (pp. 11–17). Baltimore, MD: Association for Computational Linguistics. CrossrefGoogle Scholar
[ p. 137 ]
Burstein, J., Sabatini, J., Shore, J., Moulder, B., & Lentini, J.
(2013) A user study: Technology to increase teachers’ linguistic awareness to improve instructional language support for English language learners. In L. Rello, H. Saggion, & R. Beaza-Yates (Eds.), Proceedings of the Workshop on Natural Language Processing for Improving Textual Accessibility (pp. 1–10). Atlanta, GA: Association for Computational Linguistics.Google Scholar
Cucerzan, S.
(2007) Large-scale named entity disambiguation on Wikipedia data. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL) (pp. 708–716). Prague, Czech Republic: Association for Computational Linguistics.Google Scholar
Dong, Z., & Dong, Q.
(2006) HowNet and the computation of meaning. Singapore: World Scientific. CrossrefGoogle Scholar
Fellbaum, C.
(Ed.) (1998) WordNet: An electronic lexical database. Cambridge, MA: MIT Press. CrossrefGoogle Scholar
Finkel, J., Grenager, T., & Manning, C.
(2005) Incorporating non-local information into information extraction systems by Gibbs sampling. In K. Knight, H. T. Ng, & K. Oflazer (Eds.), Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005) (pp. 363–370). Ann Arbor, MI: Association for Computational Linguistics. CrossrefGoogle Scholar
Jang, H., Piergallini, M., Wen, M., & Rose, C.
(2014) Conversational metaphors in use: Exploring the contrast between technical and everyday notions of metaphor. In B. Beigman Klebanov, E. Shutova, & P. Lichtenstein (Eds.), Proceedings of the 2nd Workshop on Metaphor in NLP (pp. 1–10). Baltimore, MD: Association for Computational Linguistics. CrossrefGoogle Scholar
Martin, J.
(1990) A computational model of metaphor interpretation. San Diego, CA: Academic Press Professional Inc.Google Scholar
Peters, W., & Peters, I.
(2000) Lexicalised systematic polysemy in WordNet. In Proceedings of the 2nd International Conference on Language Resources and Evaluation (LERC 2000). Athens, Greece: European Languages Resources Association.Google Scholar
Pragglejaz Group
(2007) MIP: A method for identifying metaphorically used words in discourse. Metaphor and Symbol, 22(1), 1–39. CrossrefGoogle Scholar
Ratinov, L., & Roth, D.
(2009) Design challenges and misconceptions in named entity recognition. In S. Stevenson & X. Carreras (Eds.), Proceedings of the 13th Conference on Computational Natural Language Learning (CoNLL-2009) (pp. 147–155). Boulder, Colorado: Association for Computational Linguistics. CrossrefGoogle Scholar
Shutova, E.
(2013) Metaphor identification as interpretation. In M. Diab, T. Baldwin, & M. Baroni (Eds.), Proceedings of the 2nd Joint Conference on Lexical and Computational Semantics (*SEM 2013) (pp. 276–285). Atlanta, GA: Association for Computational Linguistics.Google Scholar
Shutova, E., & Teufel, S.
(2010) Metaphor corpus annotated for source-target domain mappings. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, & D. Tapias (Eds.) Proceedings of the 7th International Conference on Language Resources and Evaluation (LERC 2010) (pp. 3255–3261). Valletta, Malta: European Languages Resources Association.Google Scholar
Steen, G., Dorst, A., Herrmann, B., Kaal, A., Krennmayr, T., & Pasma, T.
(2010) A method for linguistic metaphor identification: From MIP to MIPVU. Amsterdam: John Benjamins. CrossrefGoogle Scholar
[ p. 138 ]
Strapparava, C.
(2018) [Review of the book Metaphor: A computational perspective, by T. Veale, E. Shutova, & B. Beigman Klebanov]. Computational Linguistics, 44(1), 191–192. CrossrefGoogle Scholar
Toutanova, K., Klein, D., Manning, C., & Singer, Y.
(2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics (pp. 252–259). Edmond, Canada: Association for Computational Linguistics. CrossrefGoogle Scholar
Turney, P., Neuman, Y., Assaf, D., & Cohen, Y.
(2011) Literal and metaphorical sense identification through concrete and abstract context. In R. Barzilay & M. Johnson (Eds.), Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2011) (pp. 680–690). Edinburgh, UK: Association for Computational Linguistics.Google Scholar
Veale, T.
(2011) Creative language retrieval: A robust hybrid of information retrieval and linguistic creativity. In Y. Matsumoto & R. Mihalcea (Eds.), Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL 2011) (pp. 278–287). Portland, OR: Association for Computational Linguistics.Google Scholar
(2012) A context-sensitive, multi-faceted model of lexico-conceptual affect. In H. Li, C.-Y. Lin, M. Osborne, G. G. Lee, & J. C. Park (Eds.), Proceedings of the 50th Annual Conference of the Association for Computational Linguistics (ACL 2012) (pp. 75–79). Jeju Island, Korea: Association for Computational Linguistics.Google Scholar
(2014) Coming good and breaking bad: Generating transformative character arcs for use in compelling stories. In S. Colton, D. Ventura, N. Lavrač, & M. Cook (Eds.), Proceedings of the 5th International Conference on Computational Creativity (ICCC-2014) (pp. 239–246). Ljubljana, Slovenia: Jožef Stefan Institute.Google Scholar
Veale, T., Valitutti, A., & Li, G.
(2015) Twitter: The best of bot worlds for automated wit. In N. Streitz & P. Markopoulos (Eds.), Proceedings of the 3rd International Conference on Distributed, Ambient and Pervasive Interactions at the 17th International Conference on Human-Computer Interactions (DAPI/HCII-2015) (pp. 689–699). Los Angeles, CA. CrossrefGoogle Scholar
Wilks, Y., Galescu, L., Allen, J., & Dalton, A.
(2013) Automatic metaphor detection using large-scale lexical resources and conventional metaphor extraction. In E. Shutova, B. Beigman Klebanov, J. Tetreault, & Z. Kozareva (Eds.), Proceedings of the 1st Workshop on Metaphor in NLP (pp. 36–44). Atlanta, GA: Association for Computational Linguistics.Google Scholar