Article published in:
Pragmatics & Cognition
Vol. 29:1 (2022) ► pp. 111134
References
Bellucci, Francesco & Ahti-Veikko Pietarinen
2016Existential graphs as an instrument of logical analysis: Part I. Alpha. The Review of Symbolic Logic 9(2). 209–237. DOI logoGoogle Scholar
2017Two dogmas of diagrammatic reasoning: A view from existential graphs. In Kathleen A. Hull & Richard K. Atkins (eds.), Peirce on perception and reasoning: From icons to logic, 174–196. New York: Routledge.Google Scholar
2021An analysis of existential graphs: Part II. Beta. Synthese 1991. 7705–7726. DOI logoGoogle Scholar
2022Existential graphs: History and interpretation. In Cornelis De Waal (ed.), Oxford handbook for Charles S. Peirce. Oxford: Oxford University Press.Google Scholar
Beni, Majid & Ahti-Veikko Pietarinen
2021Aligning the free-energy principle with Peirce’s logic of science. European Journal for Philosophy of Science 111. 94. DOI logoGoogle Scholar
Bobrova, Angelina & Ahti-Veikko Pietarinen
2019Thoughts, things and logical guidance. In Mohammad Shafiei & Ahti-Veikko Pietarinen (eds.), Peirce and Husserl: Mutual insights on logic, mathematics and cognition, 43–58. Dordrecht: Springer. DOI logoGoogle Scholar
2020aTwo cognitive systems, two implications, and selection tasks. In Javier Camara & Martin Steffen (eds.), Software engineering and formal methods (Lecture notes in computer science 12226), 195–205. Cham: Springer. DOI logoGoogle Scholar
2020bTwo implications and dual-process theories of reasoning. In Ahti-Veikko Pietarinen, Peter Chapman, Leonie Bosveld-de Smet, Valeria Giardino, James Corter & Sven Linker (eds.), Diagrammatic representation and inference (Lecture notes in computer science 12169), 404–407. Cham: Springer. DOI logoGoogle Scholar
Carroll, Lewis
1895What the Tortoise said to Achilles. Mind 4(14). 278–280. DOI logoGoogle Scholar
Champagne, Marc & Ahti-Veikko Pietarinen
2020Why images cannot be arguments, but moving ones might. Argumentation 34(2). 207–236. DOI logoGoogle Scholar
Chater, Nick & Oaksford, Mike
2018The enigma is not entirely dispelled: A review of Mercier and Sperber’s “The enigma of reason”. Mind & Language 33(5). 525–532. DOI logoGoogle Scholar
Cruz, Nicole, Jean Baratgin, Mike Oaksford & David E. Over
2015Bayesian reasoning with ifs and ands and ors . Frontiers in Psychology 61. 192. DOI logoGoogle Scholar
Dutilh Novaes, Catarina
2018The enduring enigma of reason. Mind & Language 33(5). 513–524. DOI logoGoogle Scholar
Friston, Karl
2010The free-energy principle: A unified brain theory? Nature Reviews Neuroscience 111. 127–138. DOI logoGoogle Scholar
Haydon, Nathan & Ahti-Veikko Pietarinen
2021Residuation in Peirce’s existential graphs. In Amrita Basu, Gem Stapleton, Sven Linker, Catherine Legg, Emmanuel Manalo & Petrucio Viana (eds.), Diagrammatic representation and inference (Lecture notes in computer science 12909), 229–237. Cham: Springer. DOI logoGoogle Scholar
Hull, Kathleen A.
2017The iconic Peirce: Geometry, spatial intuition, and visual imagination. In Kathleen A. Hull & Richard Kenneth Atkins (eds.), Peirce on perception and reasoning: From icons to logic, 147–173. New York: Routledge. DOI logoGoogle Scholar
Johnson-Laird, Paul N.
2002Peirce, logic diagrams, and the elementary operations of reasoning. Thinking and Reasoning 8(1). 69–95. DOI logoGoogle Scholar
Karttunen, Lauri
2015From natural logic to natural reasoning. In Alexander Gelbukh (ed.), Computational linguistics and intelligent text processing (Lecture notes in computer science 9041), 295–309. Cham: Springer. DOI logoGoogle Scholar
Ludlow, Peter & Sašo Živanović
2022Language, form, and logic: In pursuit of natural logic’s Holy Grail. Oxford: Oxford University Press. DOI logoGoogle Scholar
Ma, Minghui & Ahti-Veikko Pietarinen
2016Proof analysis of Peirce’s alpha system of graphs. Studia Logica 105(3). 625–647. DOI logoGoogle Scholar
2017Gamma graph calculi for modal logics. Synthese 195(8). 3621–3650. DOI logoGoogle Scholar
2018A weakening of alpha graphs: Quasi-boolean algebras. In Peter Chapman, Gem Stapleton, Amirouche Moktefi, Sarah PerezKriz & Francesco Bellucci (eds.), Diagrammatic representation and inference (Lecture notes in artificial intelligence 10871), 549–564. Cham: Springer. DOI logoGoogle Scholar
2019Peirce’s calculi for classical propositional logic. The Review of Symbolic Logic 13(3). 509–540. DOI logoGoogle Scholar
Mercier, Hugo & Dan Sperber
2011Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences 34(2). 57–111. DOI logoGoogle Scholar
2017The enigma of reason: A new theory of human understanding. Cambridge, MA: Harvard University Press.Google Scholar
Øhrstrøm, Peter
1997Peirce and the quest for gamma graphs. In Dickson Lukose, Harry Delugach, Mary Keeler, Leroy Searle & John Sowa (eds.), Conceptual structures: fulfilling Peirce’s dream (Lecture notes in artificial intelligence 1257), 357–370. Cham: Springer. DOI logoGoogle Scholar
Peirce, Charles S.
1931–1958Collected papers of Charles S. Peirce (vols. 1–81). Cambridge, MA: Belknap Press of Harvard University Press. Cited by volume and paragraph number.Google Scholar
1967Manuscripts in the Houghton Library of Harvard University, as identified by Richard Robin. Annotated catalogue of the papers of Charles S. Peirce. Amherst. Cited by manuscript number.Google Scholar
1982Writings of Charles S. Peirce. A chronological edition. Peirce Edition Project, vol. 1 (1857–1866). Bloomington & Indianapolis: Indiana University Press.Google Scholar
1993Writings of Charles S. Peirce. A chronological edition. Peirce Edition Project, vol. 5 (1884–1886). Bloomington & Indianapolis: Indiana University Press.Google Scholar
1993The essential Peirce 1. Ed. by the Peirce Edition Project. Bloomington: Indiana University Press.Google Scholar
1998The essential Peirce 2. Ed. by the Peirce Edition Project. Bloomington: Indiana University Press.Google Scholar
2019–2022Logic of the future: Writings on existential graphs (vol. 21), edited by Ahti-Veikko Pietarinen. Berlin: Mouton de Gruyter.Google Scholar
Pietarinen, Ahti-Veikko
2003Games as formal tools versus games as explanations in logic and science. Foundations of Science 8(4). 317–364. DOI logoGoogle Scholar
2006Signs of logic. Peircean themes on the philosophy of language, games, and communication. Dordrecht: Springer.Google Scholar
2011Existential graphs: What the diagrammatic logic of cognition might look like. History and Philosophy of Logic 32(3). 265–281. DOI logoGoogle Scholar
2013Pragmaticism revisited: Co-evolution and the methodology of social sciences. Cognitio 14(1). 123–136.Google Scholar
2014Logical and linguistic games from Peirce to Grice to Hintikka. Teorema 331. 121–136.Google Scholar
2015aExploring the beta quadrant. Synthese 1921. 941–970. DOI logoGoogle Scholar
2015bTwo papers on existential graphs by Charles S. Peirce. Synthese 1921. 881–922. DOI logoGoogle Scholar
2017Is there a general diagram concept? In Sybille Krämer & Christina Ljundberg (eds.), Thinking in diagrams: The semiotic basis of human cognition, 121–138. Berlin: de Gruyter.Google Scholar
2018Conjectures and abductive reasoning in games. Journal of Applied Logics 5(5). 1121–1143.Google Scholar
2021Abduction and diagrams. Logic Journal of the IGPL 29(4). 447–468. DOI logoGoogle Scholar
Pietarinen, Ahti-Veikko & Francesco Bellucci
2016H. Paul Grice’s lecture notes on Charles S. Peirce’s theory of signs. International Review of Pragmatics 81. 82–129. DOI logoGoogle Scholar
2017Habits of reasoning. On the grammar and critics of logical habits. In Donna E. West & Myrene Anderson (eds.), Habit: Before and beyond consciousness, 265–282. Dordrecht: Springer.Google Scholar
Pietarinen, Ahti-Veikko, Francesco Bellucci, Angelina Bobrova, Mohammad Shafiei & Nathan Haydon
2020The blot. In Ahti-Veikko Pietarinen, Peter Chapman, Leonie Bosveld-de Smet, Valeria Giardino, James Corter & Sven Linker (eds.), Diagrammatic representation and inference (Lecture notes in computer science 12169), 225–238. Cham: Springer. DOI logoGoogle Scholar
Pietarinen, Ahti-Veikko & Majid Beni
2021Active inference and abduction. Biosemiotics 141. 499–517. DOI logoGoogle Scholar
Read, Stephen
1995Thinking about logic: An introduction to the philosophy of logic. Oxford: Oxford University Press.Google Scholar
Roberts, Don D.
1973The existential graphs of Charles S. Peirce. Berlin: Mouton de Gruyter. DOI logoGoogle Scholar
Sperber, Daniel & Hugo Mercier
2018Why a modular approach to reason? Mind & Language 33(5). 533–541. DOI logoGoogle Scholar
Stenning, Keith & Michael Van Lambalgen
2008Human reasoning and cognitive science. Cambridge, MA: MIT Press. DOI logoGoogle Scholar
Sterelny, Kim
2018Why reason? Hugo Mercier’s and Dan Sperber’s “The enigma of reason: A new theory of human understanding”. Mind & Language 33(5). 502–512. DOI logoGoogle Scholar
Sugden, Roger
2003The logic of team reasoning. Philosophical Explorations 61. 165–181. DOI logoGoogle Scholar
Tversky, Amos & Daniel Kahneman
1983Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychology Review 901. 293–315. DOI logoGoogle Scholar
Zeman, Jay
1964The graphical logic of C. S. Peirce. Chicago: University of Chicago PhD dissertation.