References (71)
References
Beerenwinkel, A., Lindauer, T., & Schmellentin, C. (2016). Schreiben im naturwissenschaftlichen Unterricht. In C. Maurer (Chair), Gesellschaft für Didaktik der Chemie und Physik Jahrestagung, Zürich.Google Scholar
Bettoni, C., Di Biase, B. (2015). Grammatical development in second languages: Exploring the boundaries of Processability Theory. Eurosla Monograph Series, 3. Amsterdam: The European Second Language Association.Google Scholar
BMB. (2016). Die kompetenzorientierte Reifeprüfung: Vorwissenschaftliche Arbeit: Unverbindliche Beurteilungshilfe für das Prüfungsgebiet “vorwissenschaftliche Arbeit” (VWA). Retrieved from [URL]
Bundesgesetzblatt II. Änderung der Verordnung über die Lehrpläne der allgemeinbildenden höheren Schulen; Änderung der Bekanntmachung der Lehrpläne für den Religionsunterricht sowie Bekanntmachung der Lehrpläne für den Religionsunterricht (216/2018).
. Prüfungsordnung AHS (174/2012).
Bühner, M. (2011). Einführung in die Test- und Fragebogenkonstruktion (3rd ed.). Hallbergmoos: Pearson.Google Scholar
Bushati, B., Ebner, C., Niederdorfer, L., & Schmölzer-Eibinger, S. (2018). Wissenschaftlich schreiben lernen in der Schule. Baltmannsweiler: Schneider Verlag Hohengehren GmbH.Google Scholar
Bygate, M. (2016). Sources, developments and directions of task-based language teaching. The Language Learning Journal, 44 (4), 381–400. DOI logoGoogle Scholar
Byrnes, H., & Manchón, R. M. (2014). Task-Based Language Learning – Insights form and for L2 Writing. Amsterdam, Philadelphia: John Benjamins Publishing Company.Google Scholar
Cho, S., & McDonnough, J. T. (2009). Meeting the Needs of High School Science Teachers in English Language Learner Instruction. Journal of Science Teacher Education, 20 (4), 385–402. DOI logoGoogle Scholar
Creswell, J. W. (2003). Research design: Qualitative, quantitative and Mixed-Methods approaches (2nd ed.). Thousand Oaks, CA: Sage.Google Scholar
Cummins, J. (1979). Cognitive/Academic Language Proficiency, Linguistic Interdependence, the Optimum Age Question and Some Other Matters. Working Papers on Bilingualism. (19), 197–205.Google Scholar
Dalton-Puffer, C. (2013). A construct of cognitive discourse functions for conceptualising content-language integration in CLIL and multilingual education. European Journal of Applied Linguistics, 1 (2), 216–253. DOI logoGoogle Scholar
Döring, N., & Bortz, J. (2016). Forschungsmethoden und Evaluation: Für Human- und Sozialwissenschaftler (5th ed.). Berlin, Heidelberg: Springer. DOI logoGoogle Scholar
Drennan, J. (2003). Cognitive interviewing: verbal data in the design and pretesting of questionnaires. Journal of Advanced Nursing, 42 (1), 57–63. DOI logoGoogle Scholar
Dresing, T., & Pehl, T. (2015). Manual (on) Transcription: Transcription Conventions, Software Guides and Practical Hints for Qualitative Researchers (3rd ed.). Marburg. Retrieved from [URL]
East, M. (2017). Research into practice: The task-based approach to instructed second language acquisition. Language Teaching, 50 (3), 412–424. DOI logoGoogle Scholar
(2021). Foundational Principles of Task-Based Language Teaching. New York, London: Taylor and Francis. DOI logoGoogle Scholar
Ellis, R. (2017). Task-Based Language Teaching. In S. Loewen & M. Sato (Eds.) The Routledge Handbook of Instructed Second Language Acquisition (pp. 108–125). Abingdon: Routledge. DOI logoGoogle Scholar
Evnitskaya, N., & Dalton-Puffer, C. (2020). Cognitive discourse functions in CLIL classrooms: eliciting and analysing students’ oral categorizations in science and history. International Journal of Bilingual Education and Bilingualism, 1–20. DOI logoGoogle Scholar
Fang, Z. (2004). Scientific Literacy: A Systemic Functional Linguistics Perspective. Science Education, 89 (2), 335–347. DOI logoGoogle Scholar
Fang, Z., & Coatoam, S. (2013). Disciplinary Literacy. What You Want to Know About it. Journal of Adolescent & Adult Literacy, 56 (8), 627–632. DOI logoGoogle Scholar
Feinstein, N. (2011). Salvaging science literacy. Science Education 95 (1), 168–185. DOI logoGoogle Scholar
Haagen-Schützenhöfer, C., & Joham, B. (2018). Professionalising physics teachers in doing experimental work. Center for Educational Policy Studies Journal, 8 (1), 9–34. DOI logoGoogle Scholar
Hasson, E., & Yarden, A. (2012). Separating the research question from the laboratory techniques: Advancing high-school biology teachers’ ability to ask research questions. Journal of Research in Science Teaching, 49 (10). 1211–1344. DOI logoGoogle Scholar
Hattie, J. A. C. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Oxon: Routledge.Google Scholar
Heine, L. (2016). Theoretische Überlegungen zur Modellierung und Erforschung von integrativem Fach- und Sprachenlernen. In B. Hinger (Ed.), Innsbrucker Beiträge zur Fachdidaktik 2, Zweite “Tagung der Fachdidaktik” 2015: Sprachsensibler Sach-Fach-Unterricht – Sprachen im Sprachunterricht (pp. 75–93). innsbruck university press. DOI logoGoogle Scholar
Hoffmann, L. (1985). Kommunikationsmittel Fachsprache: Eine Einführung (2nd ed.). Tübingen: Narr.Google Scholar
Huerta, M., & Garza, T. (2019). Writing in Science: Why, How, and for Whom? A Systematic Literature Review of 20 Years of Intervention Research (1996–2016). Educational Psychology Review, 31 1, 533–570. DOI logoGoogle Scholar
Iizuka, T. (2019). Task-based needs analysis: Identifying communicative needs for study abroad students in Japan. System, 80 1, 134–142. DOI logoGoogle Scholar
Kaewpet, C. (2009). A Framework for Investigating Learner Needs: Needs Analysis Extended to Curriculum Development. Electronic Journal of Foreign Language Teaching, 6 (2), 209–220.Google Scholar
Kafipour, R., Mahmoudi, E., Khojasteh, L., & Khajavi, Y. (2018). The effect of task-based language teaching on analytic writing in EFL classrooms. Cogent Education, 5 (1), 1496627. DOI logoGoogle Scholar
Kohnen, A., Saul, W. E., & Singer, N. R. (2015). Developing support for teachers and students in secondary science classrooms through writing criteria. In Crem (Ed.), Recherches Textuelles: Vol. 13. Recherches en écritures: regards pluriels (pp. 213–232). Université de Lorraine, Metz.Google Scholar
Lambert, C. (2010). A task-based needs analysis: Putting principles into practice. Language Teaching Research, 14 (1), 99–112. DOI logoGoogle Scholar
Lee, O., Maerten-Rivera, J., Buxton, C., Penfield, R., & Secada, W. G. (2009). Urban Elementary Teachers’ Perspectives on Teaching Science to English Language Learners. Journal of Science Teacher Education, 20 (3), 263–286. DOI logoGoogle Scholar
Leisen, J. (2013). Handbuch Sprachförderung im Fach: Sprachsensibler Fachunterricht in der Praxis: Grundlagenwissen, Anregungen und Beispiele für die Unterstützung von sprachschwachen Lernern und Lernern mit Zuwanderungsgeschichte beim Sprechen, Lesen, Schreiben und Üben im Fach. Stuttgart: Ernst Klett Sprachen.Google Scholar
Lemke, J. L. (1990). Talking science: Language, Learning, and Values. Language and educational processes. Ablex Publishing Corporation.Google Scholar
Li, S., Yuqin, Zhao, & Brindley, G. (2013). Needs analysis. In M. Byram & A. Hu (Eds.), Routledge encyclopedia of language teaching and learning (2nd ed., pp. 500–505). London: Routledge.Google Scholar
Llinares, A., & Dalton-Puffer, C. (2015). The role of different tasks in CLIL students’ use of evaluative language. In: System, 54 1, 69–79. DOI logoGoogle Scholar
Loewen, S., & Sato, M. (2021). Exploring the relationship between TBLT and ISLA. TASK, 1 (1), 47–70. DOI logoGoogle Scholar
Long, M. H. (2005). Methodological issues in learner needs analysis. In M. H. Long (Ed.), Second Language Needs Analysis (pp. 19–76). Cambridge: Cambridge University Press. DOI logoGoogle Scholar
(2015). Second Language Acquisition and Task-Based Language Teaching. Chichester: Wiley Blackwell.Google Scholar
Markic, S. (2015). Chemistry Teachers’ Attitudes and Needs When Dealing with Linguistic Heterogeneity in the Classroom. In M. Kahveci & M. Orgill (Eds.), Affective Dimensions in Chemistry Education (pp. 279–295). Berlin, Heidelberg: Springer. DOI logoGoogle Scholar
(2018). Chemistry Teachers’ Pedagogical Scientific Language Knowledge. In O. Finlayson, E. McLoughlin, S. Erduran, & P. E. Childs (Eds.), Electronic Proceedings of the ESERA 2017 Conference: Research, Practice and Collaboration in Science Education (pp. 178–185). Dublin: Dublin City University.Google Scholar
Martin, M. O., & Mullis, I. V. S. (Eds.) (2013). TIMSS and PIRLS 2011: Relationships Among Reading, Mathematics, and Science Achievement at the Fourth Grade-Implications for Early Learning. Chestnut Hill, MA: TIMSS & PIRLS International Study Center.Google Scholar
Mayring, P. (2014). Qualitative content analysis: theoretical foundation, basic procedures and software solutions. Klagenfurt. Retrieved from [URL]
McComas, W. F. (2020). Nature of Science in Science Instruction. Rationales and Strategies. Springer. DOI logoGoogle Scholar
Müllner, B., & Möller, A. (2019). Entwicklung eines Analyseinstruments zur Erfassung der sprachlichen und fachlichen Qualität von Versuchsprotokollen. In D. Krüger, A. Möller, A. Dittmer, J. Zabel, S. Nitz, & A. Scheersoi (Chairs), Frühjahrsschule 2019 in Bonn.Google Scholar
Nikula, T. (2015). Hands-on tasks in CLIL science classrooms as sites for subject-specific language use and leraning. System, 54 1, 14–27. DOI logoGoogle Scholar
Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87 (2), 224–240. DOI logoGoogle Scholar
Osborne, J. (2002). Science Without Literacy: A ship without a sail? Cambridge Journal of Education, 32 (2), 203–218. DOI logoGoogle Scholar
Özcan, N. (2012). Zum Einfluss der Fachsprache auf die Leistung im Fach Chemie: Eine Förderstudie zur Fachsprache im Chemieunterricht (Dissertation). Universität Duisburg-Essen, Duisburg-Essen.
Petersen, I. (2017). Schreiben im Fachunterricht: mögliche Potenziale für Lernende mit Deutsch als Zweitsprache. In B. Lütke, I. Petersen, & T. Tajmel (Eds.), DaZ-Forschung: Vol. 8. Fachintegrierte Sprachbildung: Forschung, Theoriebildung und Konzepte für die Unterrichtspraxis (pp. 99–125). Berlin, Boston: De Gruyter. DOI logoGoogle Scholar
Pienemann, M. (1998). Language Processing and Second Language Development: Processability Theory. Amsterdam, Netherlands: John Benjamins. DOI logoGoogle Scholar
Pienemann, M., & Lenzing, A. (2020). Processability Theory. In B. VanPatten, G. D. Keating & St. Wulff (Eds.), Theories in Second Language Acquisition. An Introduction (pp. 162–191). London, New York: Routledge Taylor & Francis Group. DOI logoGoogle Scholar
Riebling, L. (2013). Sprachbildung im naturwissenschaftlichen Unterricht: Eine Studie im Kontext migrationsbedingter sprachlicher Heterogenität. Interkulturelle Bildungsforschung: Vol. 20. Münster, New York, München, Berlin: Waxmann.Google Scholar
Rincke, K. (2011). It’s Rather like Learning a Language: Development of talk and conceptual understanding in mechanics lessons. International Journal of Science Education, 33 (2), 229–258. DOI logoGoogle Scholar
Roelcke, T. (2020). Fachsprachen (4th ed.). Berlin: Erich Schmidt Verlag.Google Scholar
Rous, M. (2016). Fachsprache im Biologieunterricht. Dissertation. Biologie lernen und lehren: Vol. 16. Berlin: Logos.
Schmölzer-Eibinger, S., & Langer, E. (2010). Sprachförderung im naturwissenschaftlichen Unterricht in mehrsprachigen Klassen: Ein didaktisches Modell für das Fach Chemie. In B. Ahrenholz (Ed.), Fachunterricht und Deutsch als Zweitsprache (pp. 203–217). Tübingen: Narr Francke Attempto Verlag.Google Scholar
Serafini, E. J., Lake, J. B., & Long, M. H. (2015). Needs analysis for specialized learner populations: Essential methodological improvements. English for Specific Purposes, 40 1, 11–26. DOI logoGoogle Scholar
Simon, U. K., Steindl, H., Larcher, N., Kulac, H., & Hotter, A. (2016). Young science journalism: writing popular scientific articles may contribute to an increase of high-school students’ interest in the natural sciences. International Journal of Science Education, 38 (5), 814–841. DOI logoGoogle Scholar
Suchań, B., & Breit, S. (Eds.) (2016). PISA 2015: Grundkompetenzen am Ende der Pflichtschulzeit im internationalen Vergleich. Graz: Leykam.Google Scholar
Taglieber, J.; Kremmel, B.; Tuna, M. H.; Hoffmann, T. D.; Takim, A.; Schreiner, C.; Kapelari, S. (2022). Fragenkatalog Ethik. Selbstevaluation zur Einhaltung ethischer Rahmenrichtlinien und rechtlicher Vorgaben bei der Durchführung von Forschungsprojekten an der Fakultät für LehrerInnenbildung. Universität Innsbruck. Retrieved from [URL]
Tajmel, T. (2010). DaZ-Förderung im naturwissenschaftlichen Fachunterricht. In B. Ahrenholz (Ed.), Fachunterricht und Deutsch als Zweitsprache (pp. 167–184). Tübingen: Narr Francke Attempto Verlag.Google Scholar
Tang, K., & Danielsson, K. (2018). The Expanding Development of Literacy Research in Science Education Around the World. In K. Tang & K. Danielsson (Ed.), Global Developments in Literacy Research for Science Education (pp. 1–11). Cham: Springer. DOI logoGoogle Scholar
Tenopir, C., & King, D. W. (2004). Communication patterns of engineers. Institute of Electrical and Electronics Engineers; Wiley Interscience.Google Scholar
Van den Branden, K. (2016). Task-based language teaching. In G. Hall (Ed.), Routledge handbooks in applied linguistics. The Routledge Handbook of English language teaching (pp. 238–251). London, New York: Routledge Taylor & FrancisGroup. DOI logoGoogle Scholar
Van Gorp, K., & Van den Branden, K. (2015). Teachers, pupils and tasks: The genesis of dynamic learning opportunities. System, 54 1, 28–39. DOI logoGoogle Scholar
Wellington, J., & Osborne, J. (2001). Language and literacy in science education. Buckingham, Philadelphia: Open Univ. Press.Google Scholar
Yore, L. D., Pimm, D., & Tuan, H.-L. (2007). The Literacy Component of Mathematical and Scientific Literacy. International Journal of Science and Mathematics Education, 5 1, 559–589. DOI logoGoogle Scholar