Referencias

[ p. 167 ]Referencias

Anguita, J., Peillon, S., Hernando, J., y Bramoulle, A.
(2004) Word confusability prediction in automatic speech recognition. Eighth International Conference on Spoken Language Processing, 1–4.Google Scholar
Bahl, Lalit R., Gennaro, S. V. De, Gopalakrishnan, P. S. and Mercer, Robert L.
1989First European Conference on Speech Communication and Technology. A fast approximate acoustic match for large vocabulary speech recognition.Google Scholar
Blanch, J. M. L.
(1967) La influencia del sustrato en la fonética del español de México. Revista de Filología Española, 50, 145–161. CrossrefGoogle Scholar
Branting, L. K.
(2003) A comparative evaluation of name-matching algorithms. Proceedings of the 9th international conference on Artificial intelligence and law, 224–232.Google Scholar
Caballero-Morales, S.-O.
(2013) Recognition of emotions in mexican spanish speech: An approach based on acoustic modelling of emotion-specific vowels. The Scientific World Journal, 1–13.Google Scholar
Chavarría-Amezcua, M.-A.
(2010) Manual de etiquetado fonético e imágenes acústicas de los alófonos del español de la Ciudad de México, para su uso en las tecnologías del habla (pp. 70–187). Tesis de licenciatura, Facultad de Filosofía y Letras, UNAM.Google Scholar
Chen, J.-Y., Olsen, P. A., y Hershey, J. R.
(2007) Word confusability-measuring hidden Markov model similarity. Eighth Annual Conference of the International Speech Communication Association, 2089–2092.Google Scholar
Christian, P.
(1998) Soundex-can it be improved? Computers in Genealogy, 6, 215–221.Google Scholar
Cuétara, J.
(2004) Fonética de la ciudad de México. Aportaciones desde las tecnologías del habla (pp. 15–135). Tesis de maestría, Posgrado en Lingüística, UNAM.Google Scholar
Daniel, Y.
(2004) Application of the Double Metaphone Algorithm to Amharic Orthography. International Conference of Ethiopian Studies XV, 1–13.Google Scholar
Davis, S., y Mermelstein, P.
(1980) Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE transactions on acoustics, speech, and signal processing, 28, 357–366. CrossrefGoogle Scholar
Elmagarmid, A. K., Ipeirotis, P. G., y Verykios, V. S.
(2007) Duplicate record detection: A survey. IEEE Transactions on knowledge and data engineering, 19, 1–16. CrossrefGoogle Scholar
Fernández, J. G.
(2007) Fonética para profesores de español: de la teoría a la práctica. Madrid: Arco Libros.Google Scholar
Gadd, T.
(1988) Fisching fore werds: phonetic retrieval of written text in information systems. Program, 22, 222–237. CrossrefGoogle Scholar
(1990) PHONIX: The algorithm. Program, 24, 363–366. CrossrefGoogle Scholar
Gálvez, C.
(2007) Identificación de nombres personales por medio de sistemas de codificación fonética. Encontros Bibli: Revista eletrônica de biblioteconomia e ciência da informação, 11, 105–116.Google Scholar
Goldrick, M., Vaughn, C., y Murphy, A.
(2013) The effects of lexical neighbors on stop consonant articulation. The Journal of the Acoustical Society of America, 134, 172–177. CrossrefGoogle Scholar
[ p. 168 ]
Goldwater, S., Jurafsky, D., y Manning, C. D.
(2010) Which words are hard to recognize? Prosodic, lexical, and disfluency factors that increase speech recognition error rates. Speech Communication, 52, 181–200. CrossrefGoogle Scholar
Gonzales-Cam, C.
(2008) Algoritmos fonéticos en el desarrollo de un sistema de información de marcas y signos distintivos. Biblios: Revista de bibliotecología y Ciencias de la comunicación, 32, 2–8.Google Scholar
Grannis, S. J., Overhage, J. M., y McDonald, C. J.
(2004) Real world performance of approximate string comparators for use in patient matching. Medinfo, 43–47.Google Scholar
Knuth, D. E.
(1998) Sorting and Searching. The Art of Computer Programming, 3, 392–396.Google Scholar
Hernández-Mena, C. D., y Herrera-Camacho, J. A.
(2013) Creación de un diccionario de pronunciación de nombres propios para uso en tecnologías del habla. Vigésima cuarta reunión internacional de otoño de comunicaciones, computación, electrónica, automatización, robótica y exposición industrial ROCyC’2013, 1–5.Google Scholar
(2014a) CIEMPIESS: A new open-sourced mexican spanish radio corpus. Ninth International Conference on Language Resources and Evaluation, 14, 371–375.Google Scholar
Hernández-Mena, C. D., Martınez-Gómez, N. N., y Herrera-Camacho, J.-A.
(2014b) A Set of Phonetic and Phonological Rules for Mexican Spanish Revisited, Updated, Enhanced and Implemented. Advances in Computing Science. Center for Computing Research of IPN, 83, 61–71.Google Scholar
Hernández-Mena, C. D., Meza-Ruiz, I. V., y Herrera-Camacho, J. A.
(2017) Automatic speech recognizers for Mexican Spanish and its open resources. Journal of Applied Research and Technology, 15(1), 259–270. CrossrefGoogle Scholar
Kondrak, G., y Dorr, B.
(2004) Identification of confusable drug names: A new approach and evaluation methodology. Proceedings of the 20th international conference on Computational Linguistics, 952.Google Scholar
Krstev, C., Vitas, D., Maurel, D., y Tran, M.
(2005) Multilingual ontology of proper names. 2nd Language y Technology Conference, LTC’05, 116–119.Google Scholar
Lambert, B. L., Lin, S.-J., Chang, K.-Y., y Gandhi, S. K.
(1999) Similarity as a risk factor in drug-name confusion errors: the look-alike (orthographic) and sound-alike (phonetic) model. Medical care, 37, 1214–1225. CrossrefGoogle Scholar
Levenshtein, V. I.
(1966) Binary codes capable of correcting deletions, insertions, and reversals. Soviet physics doklady, 10, 707–710.Google Scholar
Luce, P. A., y Pisoni, D. B.
(1998) Recognizing spoken words: The neighborhood activation model. Ear and hearing, 19(1), 1. CrossrefGoogle Scholar
McDonald, D.
(1996) Internal and external evidence in the identification and semantic categorization of proper names. Corpus processing for lexical acquisition, 21–39.Google Scholar
McQueen, J. M.
(1991) The influence of the lexicon on phonetic categorization: stimulus quality in word-final ambiguity. Journal of Experimental Psychology: Human Perception and Performance, 17, 433.Google Scholar
Mills, D. L., Prat, C., Zangl, R., Stager, C. L., Neville, H. J., y Werker, J. F.
(2004) Language experience and the organization of brain activity to phonetically similar words: ERP evidence from 14-and 20 month olds. Journal of Cognitive Neuroscience, 16, 1452–1464. CrossrefGoogle Scholar
Nye, P., y Gaitenby, J.
(1973) Consonant intelligibility in synthetic speech and in a natural speech control (modified rhyme test results). Haskins Laboratories Status Report on Speech Research, 33, 77–91.Google Scholar
[ p. 169 ]
Pande, B., y Dhami, H.
(2011) Application of natural language processing tools in stemming. International Journal of Computer Applications, 27, 14–19. CrossrefGoogle Scholar
Parmar, V. P., y Kumbharana, C.
(2014) Study Existing Various Phonetic Algorithms and Designing and Development of a working model for the New Developed Algorithm and Comparison by implementing it with Existing Algorithm(s). International Journal of Computer Applications, 98(19), 45–49. CrossrefGoogle Scholar
Peereman, R.
(1997) Orthographic and phonological neighborhoods in naming: Not all neighbors are equally influential in orthographic space. Journal of Memory and language, 37, 382–410. CrossrefGoogle Scholar
Philips, L.
(1990) Hanging on the metaphone. Computer Language, 7(12), 39–44.Google Scholar
(2000) The double metaphone search algorithm. Cusers journal, 18, 38–43.Google Scholar
Pineda, L. A., Castellanos, H., Cuétara, J., Galescu, L., Juárez, J., Llisterri, J., Pérez, P., y Villaseñor, L.
(2010) The Corpus DIMEx100: transcription and evaluation. Language Resources and Evaluation, 44, 347–370. CrossrefGoogle Scholar
Pineda, L. A., Pineda, L. V., Cuétara, J., Castellanos, H., y López, I.
(2004) DIMEx100: A new phonetic and speech corpus for Mexican Spanish. Iberamia, 3315, 974–984.Google Scholar
Pinto, D., Vilariño, D., Alemán, Y., Gómez, H., Loya, N., y Jiménez-Salazar, H.
(2012) The Soundex phonetic algorithm revisited for SMS text representation. Text, Speech and Dialogue, 47–55. CrossrefGoogle Scholar
Pisoni, D. B., Nusbaum, H. C., Luce, P. A., y Slowiaczek, L. M.
(1985) Speech perception, word recognition and the structure of the lexicon. Speech communication, 4, 75–95. CrossrefGoogle Scholar
Quilis, A.
(1984) Métrica española. Barcelona: Ariel Barcelona.Google Scholar
Rahm, E., y Do, H. H.
(2000) Data cleaning: Problems and current approaches. IEEE Data Eng. Bull, 23, 3–13.Google Scholar
Reddy, A. M., y Rose, R. C.
(2008) Towards domain independence in machine aided human translation. Interspeech, 2358–2361.Google Scholar
Reyes-Barragán, M. A., Pineda, L. V., y Montes-y Gómez, M.
(2009) INAOE at qast 2009: Evaluating the usefulness of a phonetic codification of transcriptions. CLEF Working Notes, 1–5.Google Scholar
Riley, M. D., y Roe, D. B.
(1998) Confusable word detection in speech recognition. US: Patent No. 5,737,723, 7, 1–6.Google Scholar
Russell, R., y Odell, M.
(1918) The Soundex Indexing System. Technical Report.Google Scholar
Stanier, A.
(1990) How accurate is Soundex matching. Computers in Genealogy, 3, 286–288.Google Scholar
Taft, R.
(1970) Special Report no. 1. Albany. New York: Bureau of Systems Development, New York State Identification and Intelligence Systems (NYSIIS).Google Scholar
UzZaman, N., y Khan, M.
(2005) A double metaphone encoding for Bangla and its application in spelling checker. Natural Language Processing and Knowledge Engineering IEEE, 705–710.Google Scholar
Voran, S.
(2013) Using articulation index band correlations to objectively estimate speech intelligibility consistent with the modified rhyme test. Applications of Signal Processing to Audio and Acoustics (WASPAA), 1–4.Google Scholar
Zobel, J., y Dart, P.
(1996) Phonetic string matching: Lessons from information retrieval. Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, 166–172.Google Scholar