Part of
Understanding Language and Cognition through Bilingualism: In honor of Ellen Bialystok
Edited by Gigi Luk, John A.E. Anderson and John G. Grundy
[Studies in Bilingualism 64] 2023
► pp. 245271
Abásolo, D., Hornero, R., Espino, P., Alvarez, D., & Poza, J.
(2006) Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiological Measurement, 27(3), 241. DOI logoGoogle Scholar
Abhang, P. A., Gawali, B. W., & Mehrotra, S. C.
(2016) Technological basics of EEG recording and operation of apparatus. In Introduction to EEG-and speech-based emotion recognition (pp. 19–50). Academic Press. DOI logoGoogle Scholar
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., … & Costa, A.
(2012) Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22, 2076–2086. DOI logoGoogle Scholar
Anderson, J. A., Hawrylewicz, K., & Grundy, J. G.
(2020) Does bilingualism protect against dementia? A meta-analysis. Psychonomic Bulletin & Review, 27, 952–965. DOI logoGoogle Scholar
Antón, E., Duñabeitia, J. A., Estévez, A., Hernández, J. A., Castillo, A., Fuentes, L. J., … & Carreiras, M.
(2014) Is there a bilingual advantage in the ANT task? Evidence from children. Frontiers in Psychology, 5, 398.Google Scholar
Arroyo, S., Lesser, R. P., Poon, W. T., Robert, W., Webber, S., & Gordon, B.
(1997) Neuronal generators of visual evoked potentials in humans: Visual processing in the human cortex. Epilepsia, 38, 600–610. DOI logoGoogle Scholar
Barac, R., Moreno, S., & Bialystok, E.
(2016) Behavioral and electrophysiological differences in executive control between monolingual and bilingual children. Child Development, 87(4), 1277–1290. DOI logoGoogle Scholar
Bartholow, B. D., Pearson, M. A., Dickter, C. L., Sher, K. J., Fabiani, M., & Gratton, G.
(2005) Strategic control and medial frontal negativity: Beyond errors and response conflict. Psychophysiology, 42(1), 33–42. DOI logoGoogle Scholar
Başar, E., Başar-Eroglu, C., Karakaş, S., & Schürmann, M.
(2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39, 241–248. DOI logoGoogle Scholar
Beharelle, A. R., Kovačević, N., McIntosh, A. R., & Levine, B.
(2012) Brain signal variability relates to stability of behavior after recovery from diffuse brain injury. NeuroImage, 60, 1528–1537. DOI logoGoogle Scholar
Berken, J. A., Chai, X., Chen, J. K., Gracco, V. L., & Klein, D.
(2016) Effects of early and late bilingualism on resting-state functional connectivity. Journal of Neuroscience, 36(4), 1165–1172. DOI logoGoogle Scholar
Bialystok, E.
(2015) Bilingualism and the development of executive function: The role of attention. Child Development Perspectives, 9(2), 117–121. DOI logoGoogle Scholar
(2017) The bilingual adaptation: How minds accommodate experience. Psychological Bulletin, 143, 233–263. DOI logoGoogle Scholar
Bialystok, E., Craik, F. I., & Freedman, M.
(2007) Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459–464. DOI logoGoogle Scholar
Bialystok, E., Craik, F. I., Klein, R., & Viswanathan, M.
(2004) Bilingualism, aging, and cognitive control: evidence from the Simon task. Psychology and Aging, 19, 290–303. DOI logoGoogle Scholar
Bice, K., & Kroll, J. F.
(2019) English only? Monolinguals in linguistically diverse contexts have an edge in language learning. Brain and Language, 196, 104644. DOI logoGoogle Scholar
Bice, K., Yamasaki, B. L., & Prat, C. S.
(2020) Bilingual language experience shapes resting-state brain rhythms. Neurobiology of Language, 1(3), 288–318. DOI logoGoogle Scholar
Bokura, H., Yamaguchi, S., & Kobayashi, S.
(2001) Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology, 112(12), 2224–2232. DOI logoGoogle Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D.
(2001) Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. DOI logoGoogle Scholar
Brito, N., & Barr, R.
(2014) Flexible memory retrieval in bilingual 6-month-old infants. Developmental Psychobiology, 56, 1156–1163. DOI logoGoogle Scholar
Brown, S. P., Mathur, B. N., Olsen, S. R., Luppi, P. H., Bickford, M. E., & Citri, A.
(2017) New breakthroughs in understanding the role of functional interactions between the neocortex and the claustrum. Journal of Neuroscience, 37(45), 10877–10881. DOI logoGoogle Scholar
Buzsáki, G., & Draguhn, A.
(2004) Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. DOI logoGoogle Scholar
Calvo, N., Grundy, J. G., & Bialystok, E.
(2023) Bilingualism modulates neural efficiency at rest through alpha reactivity. Neuropsychologia, 180, 108486. DOI logoGoogle Scholar
Carpentier, S. M., Moreno, S., & McIntosh, A. R.
(2016) Short-term music training enhances complex, distributed neural communication during music and linguistic tasks. Journal of Cognitive Neuroscience, 28(10), 1603–1612. DOI logoGoogle Scholar
Cassani, R., Estarellas, M., San-Martin, R., Fraga, F. J., & Falk, T. H.
(2018, Oct. 4). Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment. Disease Markers, 5174815. DOI logoGoogle Scholar
Coderre, E. L. & Van Heuven, W. J. B.
(2014) Electrophysiological explorations of the bilingual advantage: Evidence from a Stroop task. PLoS One, 9, e103424. DOI logoGoogle Scholar
Comishen, K. J., & Bialystok, E.
(2021) Increases in attentional demands are associated with language group differences in working memory performance. Brain and Cognition, 147, 105658. DOI logoGoogle Scholar
Comishen, K. J., Bialystok, E., & Adler, S. A.
(2019) The impact of bilingual environments on selective attention in infancy. Developmental Science, 22(4), e12797. DOI logoGoogle Scholar
Compton, R. J., Huber, E., Levinson, A. R., & Zheutlin, A.
(2012) Is “conflict adaptation” driven by conflict? Behavioral and EEG evidence for the underappreciated role of congruent trials. Psychophysiology, 49, 583–589. DOI logoGoogle Scholar
Costa, A., Hernández, M., Costa-Faidella, J., & Sebastián-Gallés, N.
(2009) On the bilingual advantage in conflict processing: Now you see it, now you don’t. Cognition, 113(2), 135–149. DOI logoGoogle Scholar
Costa, M., Goldberger, A. L., & Peng, C. K.
(2002) Multiscale entropy analysis of complex physiologic time series. Physical Review Letters, 89, 068102. DOI logoGoogle Scholar
(2005) Multiscale entropy analysis of biological signals. Physical Review E, 71, 021906. DOI logoGoogle Scholar
Deco, G., Jirsa, V. K., & McIntosh, A. R.
(2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12, 43–56. DOI logoGoogle Scholar
de Frutos-Lucas, J., López-Sanz, D., Cuesta, P., Bruña, R., de la Fuente, S., Serrano, N., … Maestú, F.
(2020) Enhancement of posterior brain functional networks in bilingual older adults. Bilingualism: Language and Cognition, 23(2), 387–400. DOI logoGoogle Scholar
Del Percio, C., Infarinato, F., Marzano, N., Iacoboni, M., Aschieri, P., Lizio, R., … & Babiloni, C.
(2011) Reactivity of alpha rhythms to eyes opening is lower in athletes than non-athletes: A high-resolution EEG study. International Journal of Psychophysiology, 82, 240–247. DOI logoGoogle Scholar
DeLuca, V., Rothman, J., Bialystok, E., & Pliatsikas, C.
(2019) Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proceedings of the National Academy of Sciences, 116, 7565–7574. DOI logoGoogle Scholar
(2020) Duration and extent of bilingual experience modulate neurocognitive outcomes. NeuroImage, 204, 116222. DOI logoGoogle Scholar
Dong, S., Reder, L. M., Yao, Y., Liu, Y., & Chen, F.
(2015) Individual differences in working memory capacity are reflected in different ERP and EEG patterns to task difficulty. Brain Research, 1616, 146–156. DOI logoGoogle Scholar
Eriksen, B. A., & Eriksen, C. W.
(1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16(1), 143–149. DOI logoGoogle Scholar
Escudero, J., Abásolo, D., Hornero, R., Espino, P., & López, M.
(2006) Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiological Measurement, 27(11), 1091. DOI logoGoogle Scholar
Felton, A., Vazquez, D., Ramos-Nunez, A. I., Greene, M. R., Macbeth, A., Hernandez, A. E., & Chiarello, C.
(2017) Bilingualism influences structural indices of interhemispheric organization. Journal of Neurolinguistics, 42, 1–11. DOI logoGoogle Scholar
Fernández, T., Harmony, T., Mendoza, O., López-Alanís, P., Marroquín, J. L., Otero, G., & Ricardo-Garcell, J.
(2012) Event-related EEG oscillations to semantically unrelated words in normal and learning disabled children. Brain and Cognition, 80, 74–82. DOI logoGoogle Scholar
Fernandez, M., Tartar, J. L., Padron, D. & Acosta, J.
(2013) Neurophysiological marker of inhibition distinguishes language groups on a non-linguistic executive function test. Brain and Cognition, 83, 330–336. DOI logoGoogle Scholar
Festman, J., & Münte, T. F.
(2012) Cognitive control in Russian-German bilinguals. Frontiers in Psychology, 3, 115. DOI logoGoogle Scholar
Folstein, J. R., & Van Petten, C.
(2008) Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(1), 152–170.Google Scholar
Gallo, F., Novitskiy, N., Myachykov, A., & Shtyrov, Y.
(2021) Individual differences in bilingual experience modulate executive control network and performance: Behavioral and structural neuroimaging evidence. Bilingualism: Language and Cognition, 24(2), 293–304. DOI logoGoogle Scholar
Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L.
(2010) Blood oxygen level-dependent signal variability is more than just noise. Journal of Neuroscience, 30, 4914–4921. DOI logoGoogle Scholar
Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W., Lindenberger, U., McIntosh, A. R., & Grady, C. L.
(2013) Moment-to-moment brain signal variability: A next frontier in human brain mapping? Neuroscience and Biobehavioral Reviews, 37, 610–624. DOI logoGoogle Scholar
Gehring, W. J., Liu, Y., Orr, J. M., & Carp, J.
(2012) The error-related negativity (ERN/ Ne). In S. J. Luck & E. S. Kappenman (Eds.), Oxford handbook of event-related potential components (pp. 231–291). Oxford University Press.Google Scholar
Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R., & Jirsa, V. K.
(2008) Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Computational Biology, 4, e1000196. DOI logoGoogle Scholar
Green, D. W.
(1998) Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 67–81. DOI logoGoogle Scholar
Grice, S. J., Spratling, M. W., Karmiloff-Smith, A., Halit, H., Csibra, G., De Haan, M., & Johnson, M. H.
(2001) Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport, 12, 2697–2700. DOI logoGoogle Scholar
Groom, M. J., & Cragg, L.
(2015) Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition. Brain and Cognition, 97, 1–9. DOI logoGoogle Scholar
Grundy, J. G.
(2020) The effects of bilingualism on executive functions: An updated quantitative analysis. Journal of Cultural Cognitive Science, 4, 177–199. DOI logoGoogle Scholar
Grundy, J. G., Anderson, J. A., & Bialystok, E.
(2017a) Neural correlates of cognitive processing in monolinguals and bilinguals. Annals of the New York Academy of Sciences, 1396, 183–201. DOI logoGoogle Scholar
(2017b) Bilinguals have more complex EEG brain signals in occipital regions than monolinguals. NeuroImage, 159, 280–288. DOI logoGoogle Scholar
Grundy, J. G., & Bialystok, E.
(2018) Monolinguals and bilinguals disengage attention differently following conflict and errors: Evidence from ERPs. Brain and Cognition, 128, 28–36. DOI logoGoogle Scholar
Grundy, J. G., Chung-Fat-Yim, A., Friesen, D. C., Mak, L., & Bialystok, E.
(2017c) Sequential congruency effects reveal differences in disengagement of attention for monolingual and bilingual young adults. Cognition, 163, 42–55. DOI logoGoogle Scholar
Grundy, J. G., Benarroch, M. F., Woodward, T. S., Metzak, P. D., Whitman, J. C., & Shedden, J. M.
(2013) The bivalency effect in task switching: Event-related potentials. Human Brain Mapping, 34, 999–1012. DOI logoGoogle Scholar
Grundy, J. G., Pavlenko, E., & Bialystok, E.
(2020) Bilingualism modifies disengagement of attention networks across the scalp: A multivariate ERP investigation of the IOR paradigm. Journal of Neurolinguistics, 56, 100933. DOI logoGoogle Scholar
Grützmann, R., Riesel, A., Klawohn, J., Kathmann, N., & Endrass, T.
(2014) Complementary modulation of N2 and CRN by conflict frequency. Psychophysiology, 51, 761–772. DOI logoGoogle Scholar
Gullifer, J. W., Chai, X. J., Whitford, V., Pivneva, I., Baum, S., Klein, D., & Titone, D.
(2018) Bilingual experience and resting-state brain connectivity: Impacts of L2 age of acquisition and social diversity of language use on control networks. Neuropsychologia, 117, 123–134. DOI logoGoogle Scholar
Harmony, T., Fernández, T., Silva, J., Bernal, J., Díaz-Comas, L., Reyes, A., … & Rodríguez, M.
(1996) EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. International Journal of Psychophysiology, 24, 161–171. DOI logoGoogle Scholar
Heidlmayr, K., Hemforth, B., Moutier, S., & Isel, F.
(2015) Neurodynamics of executive control processes in bilinguals: Evidence from ERP and source reconstruction analyses. Frontiers in Psychology, 6, 821. DOI logoGoogle Scholar
Heil, M., Osman, A., Wiegelmann, J., Rolke, B., & Hennighausen, E.
(2000) N200 in the Eriksen-task: inhibitory executive process? Journal of Psychophysiology, 14(4), 218–225. DOI logoGoogle Scholar
Heisz, J. J., Shedden, J. M., & McIntosh, A. R.
(2012) Relating brain signal variability to knowledge representation. NeuroImage, 63, 1384–1392. DOI logoGoogle Scholar
Hilchey, M. D., & Klein, R. M.
(2011) Are there bilingual advantages on nonlinguistic interference tasks? Implications for the plasticity of executive control processes. Psychonomic Bulletin and Review, 18(4), 625–628. DOI logoGoogle Scholar
Hopfinger, J. B., & Mangun, G. R.
(1998) Reflexive attention modulates processing of visual stimuli in human extrastriate cortex. Psychological Science, 9, 441–447. DOI logoGoogle Scholar
Jiao, L., Liu, C., Liang, L., Plummer, P., Perfetti, C. A., & Chen, B.
(2019) The contributions of language control to executive functions: From the perspective of bilingual comprehension. Quarterly Journal of Experimental Psychology, 72(8), 1984–1997. DOI logoGoogle Scholar
Jodo, E., & Kayama, Y.
(1992) Relation of a negative ERP component to response inhibition in a Go/No-go task. Electroencephalography and Clinical Neurophysiology, 82(6), 477–482. DOI logoGoogle Scholar
Kopp, B., Rist, F., & Mattler, U.
(1996) N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology, 33(3), 282–294. DOI logoGoogle Scholar
Kousaie, S., & Phillips, N.
(2012) Conflict monitoring and resolution: Are two languages better than one? Evidence from reaction time and event-related brain potentials. Brain Research, 1446, 71–90. DOI logoGoogle Scholar
(2017) A behavioural and electrophysiological investigation of the effect of bilingualism on aging and cognitive control. Neuropsychologia, 94, 23–35. DOI logoGoogle Scholar
Kovács, Á. M., & Mehler, J.
(2009) Cognitive gains in 7-month-old bilingual infants. Proceedings of the National Academy of Sciences, 106(16), 6556–6560. DOI logoGoogle Scholar
Kroll, J. F., Dussias, P. E., Bogulski, C. A., & Kroff, J. R. V.
(2012) Juggling two languages in one mind: What bilinguals tell us about language processing and its consequences for cognition. In B. Ross (Ed.), Psychology of learning and motivation (pp. 229–262). Academic Press.Google Scholar
Kroll, J. F., Bobb, S. C., & Hoshino, N.
(2014) Two languages in mind: bilingualism as a tool to investigate language, cognition, and the brain. Current Directions in Psychological Science, 23, 159–163. DOI logoGoogle Scholar
Kuipers, J. R., & Westphal, K.
(2021) Auditory processing and high task demands facilitate the bilingual executive control advantage in young adults. Journal of Neurolinguistics, 57, 100954. DOI logoGoogle Scholar
Kwon, Y. H., & Le, S-E.
(2017) Learning a third language brings changes in executive function: An ERP study. Language Research, 53(3), 445–471. DOI logoGoogle Scholar
Larson, M. J., Clayson, P. E., Clawson, A.
(2014) Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal Psychophysiology, 93, 283–297. DOI logoGoogle Scholar
Lippé, S., Kovačević, N., & McIntosh, R.
(2009) Differential maturation of brain signal complexity in the human auditory and visual system. Frontiers in Human Neuroscience, 3, 48. DOI logoGoogle Scholar
Lobaugh, N. J., West, R., & McIntosh, A. R.
(2001) Spatiotemporal analysis of experimental differences in event-related potential data with partial least squares. Psychophysiology, 38, 517–530. DOI logoGoogle Scholar
Luk, G., & Bialystok, E.
(2013) Bilingualism is not categorical variable: Interaction between language proficiency and usage. Journal of Cognitive Psychology, 25(5), 605–621. DOI logoGoogle Scholar
McIntosh, A. R., Bookstein, F. L., Haxby, J. V., & Grady, C. L.
(1996) Spatial pattern analysis of functional brain images using partial least squares. NeuroImage, 3, 143–157. DOI logoGoogle Scholar
McIntosh, A. R., Kovačević, N., & Itier, R. J.
(2008) Increased brain signal variability accompanies lower behavioral variability in development. PLoS Computational Biology, 4, e1000106. DOI logoGoogle Scholar
Meier, B., Woodward, T. S., Rey-Mermet, A., & Graf, P.
(2009) The bivalency effect in task switching: General and enduring. Canadian Journal of Experimental Psychology, 63, 201–210. DOI logoGoogle Scholar
Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., & de Peralta, R. G.
(2004) EEG source imaging. Clinical Neurophysiology, 115, 2195–2222. DOI logoGoogle Scholar
Mishra, R. K., Hilchey, M. D., Singh, N., & Klein, R. M.
(2012) On the time course of exogenous cueing effects in bilinguals: Higher proficiency in a second language is associated with more rapid endogenous disengagement. The Quarterly Journal of Experimental Psychology, 65, 1502–1510. DOI logoGoogle Scholar
Mišic, B., Mills, T., Taylor, M. J., & McIntosh, A. R.
(2010) Brain noise is task dependent and region specific. Journal of Neurophysiology, 104, 2667–2676. DOI logoGoogle Scholar
Mohades, S. G., Struys, E., Van Schuerbeek, P., Baeken, C., Van De Craen, P., & Luypaert, R.
(2014) Age of second language acquisition affects nonverbal conflict processing in children: An fMRI study. Brain and Behavior, 4(5), 626–642. DOI logoGoogle Scholar
Morales, J., Gómez-Ariza, C. J., & Bajo, M. T.
(2013) Dual mechanisms of cognitive control in bilinguals and monolinguals. Journal of Cognitive Psychology, 25, 531–546. DOI logoGoogle Scholar
Morales, J., Yudes, C., Gómez-Ariza, C. J., & Bajo, M. T.
(2015) Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs. Neuropsychologia, 66, 157–169. DOI logoGoogle Scholar
Moreno, S., Wodniecka, Z., Tays, W., Alain, C., & Bialystok, E.
(2014) Inhibitory control in bilinguals and musicians: Event-related potential (ERP) evidence for experience-specific effects. PLOS One, 9(4), e94169. DOI logoGoogle Scholar
Morrison, C., Kamal, F., & Taler, V.
(2019) The influence of bilingualism on working memory event-related potentials. Bilingualism: Language and Cognition, 22(1), 191–199. DOI logoGoogle Scholar
Morrison, C., Kamal, F., Le, K., & Taler, V.
(2020) Monolinguals and bilinguals respond differently to a delayed matching-to-sample task: An ERP study. Bilingualism: Language and Cognition, 23(4), 858–868. DOI logoGoogle Scholar
Nayak, S., & Tarullo, A. R.
(2020) Error-related negativity (ERN) and ‘hot’ executive function in bilingual and monolingual preschoolers. Bilingualism: Language and Cognition, 23(4), 897–908. DOI logoGoogle Scholar
Paap, K. R., & Greenberg, Z. I.
(2013) There is no coherent evidence for a bilingual advantage in executive processing. Cognitive Psychology, 66, 232–258. DOI logoGoogle Scholar
Park, J. H., Kim, S., Kim, C. H., Cichocki, A., & Kim, K.
(2007) Multiscale entropy analysis of EEG from patients under different pathological conditions. Fractals, 15(04), 399–404. DOI logoGoogle Scholar
Penolazzi, B., Angrilli, A., & Job, R.
(2009) Gamma EEG activity induced by semantic violation during sentence reading. Neuroscience Letters, 465, 74–78. DOI logoGoogle Scholar
Perani, D., Farsad, M., Ballarini, T., Lubian, F., Malpetti, M., Fracchetti, A., … & Abutalebi, J.
(2017) The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proceedings of the National Academy of Sciences, 114(7), 1690–1695. DOI logoGoogle Scholar
Pliatsikas, C.
(2020) Understanding structural plasticity in the bilingual brain: The Dynamic Restructuring Model. Bilingualism: Language and Cognition, 23(2), 459–471. DOI logoGoogle Scholar
Pliatsikas, C., Moschopoulou, E., & Saddy, J. D.
(2015) The effects of bilingualism on the white matter structure of the brain. Proceedings of the National Academy of Sciences, 112(5), 1334–1337. DOI logoGoogle Scholar
Polich, J.
(2007) Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 118(10), 2128–2148. DOI logoGoogle Scholar
Polich, J., & Kok, A.
(1995) Cognitive and biological determinants of P300: An integrative review. Biological Psychology, 41(2), 103–146. DOI logoGoogle Scholar
Pons, F., Bosch, L., & Lewkowicz, D. J.
(2015) Bilingualism modulates infants’ selective attention to the mouth of a talking face. Psychological Science, 26, 490–498. DOI logoGoogle Scholar
Prat, C. S., Yamasaki, B. L., Kluender, R. A., & Stocco, A.
(2016) Resting-state qEEG predicts rate of second language learning in adults. Brain and Language, 157, 44–50. DOI logoGoogle Scholar
Prat, C. S., Yamasaki, B. L., & Peterson, E. R.
(2019) Individual differences in resting-state brain rhythms uniquely predict second language learning rate and willingness to communicate in adults. Journal of Cognitive Neuroscience, 31, 78–94. DOI logoGoogle Scholar
Rämä, P., Leminen, A., Koskenoja-Vainikka, S., Leminen, M., Alho, K., & Kujala, T.
(2018) Effect of language experience on selective auditory attention: An event-related potential study. International Journal of Psychophysiology, 127, 38–45. DOI logoGoogle Scholar
Rebai, M., Bernard, C., & Lannou, J.
(1997) The Stroop’s test evokes a negative brain potential, the N400. International Journal of Neuroscience, 91(1–2), 85–94. DOI logoGoogle Scholar
Rubin, O., & Meiran, N.
(2005) On the origins of the task mixing cost in the cuing task-switching paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(6), 1477–1491.Google Scholar
Schnitzler, A., & Gross, J.
(2005) Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6, 285–296. DOI logoGoogle Scholar
Schroeder, S., & Marian, V.
(2017) Cognitive consequences of trilingualism. International Journal of Bilingualism, 21(6), 754–773. DOI logoGoogle Scholar
Sebastián-Gallés, N., Albareda-Castellot, B., Weikum, W. M., & Werker, J. F.
(2012) A bilingual advantage in visual language discrimination in infancy. Psychological Science, 23(9), 994–999. DOI logoGoogle Scholar
Simon, J. R., & Rudell, A. P.
(1967) Auditory SR compatibility: The effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51(3), 300–304. DOI logoGoogle Scholar
Singh, L., Fu, C. S., Rahman, A. A., Hameed, W. B., Sanmugam, S., Agarwal, P., … & GUSTO Research Team
(2015) Back to basics: A bilingual advantage in infant visual habituation. Child Development, 86, 294–302. DOI logoGoogle Scholar
Stroop, J. R.
(1935) Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. DOI logoGoogle Scholar
Sullivan, M. D., Janus, M., Moreno, S., Astheimer, L., & Bialystok, E.
(2014) Early stage second-language learning improves executive control: Evidence from ERP. Brain and Language, 139, 84–98. DOI logoGoogle Scholar
Surrain, S., & Luk, G.
(2017) Describing bilinguals: A systematic review of labels and descriptors used in the literature between 2005–2015. Bilingualism: Language and Cognition, 22(2), 401–415. DOI logoGoogle Scholar
Szűcs, D., & Soltész, F.
(2010) Stimulus and response conflict in the color–word Stroop task: A combined electro-myography and event-related potential study. Brain Research, 1325, 63–76. DOI logoGoogle Scholar
Tanner, D., Morgan-Short, K., & Luck, S. J.
(2015) How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology, 52(8), 997–1009. DOI logoGoogle Scholar
Timmer, K., Grundy, J. G., & Bialystok
(2017) Earlier and more distributed neural networks for bilinguals than monolinguals during switching. Neuropsychologia, 106, 245–260. DOI logoGoogle Scholar
Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W.
(2005) An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505. DOI logoGoogle Scholar
Van Veen, V., & Carter, C. S.
(2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology and Behavior, 77(4–5), 477–482. DOI logoGoogle Scholar
Verguts, T.
(2017) Binding by random bursts: A computational model of cognitive control. Journal of Cognitive Neuroscience, 29(6), 1103–1118. DOI logoGoogle Scholar
Vigneau, M., Beaucousin, V., Herve, P. Y., Duffau, H., Crivello, F., Houde, O., … & Tzourio-Mazoyer, N.
(2006) Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. NeuroImage, 30, 1414–1432. DOI logoGoogle Scholar
Von Bastian, C. C., Souza, A. S., & Gade, M.
(2016) No evidence for bilingual cognitive advantages: A test of four hypotheses. Journal of Experimental Psychology: General, 145(2), 246–258. DOI logoGoogle Scholar
Watter, S., Geffen, G. M., & Geffen, L. B.
(2001) The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology, 38(6), 998–1003. DOI logoGoogle Scholar
Weikum, W. M., Vouloumanos, A., Navarra, J., Soto-Faraco, S., Sebastián-Gallés, N., & Werker, J. F.
(2007) Visual language discrimination in infancy. Science, 316, 1159. DOI logoGoogle Scholar
West, R.
(2003) Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41(8), 1122–1135. DOI logoGoogle Scholar
Woodward, T. S., Meier, B., Tipper, C., & Graf, P.
(2003) Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50, 233–238. DOI logoGoogle Scholar
Woumans, E. V. Y., Santens, P., Sieben, A., Versijpt, J. A. N., Stevens, M., & Duyck, W.
(2015) Bilingualism delays clinical manifestation of Alzheimer’s disease. Bilingualism: Language and Cognition, 18(3), 568–574. DOI logoGoogle Scholar
Yamasaki, B. L., Stocco, A., & Prat, C. S.
(2018) Relating individual differences in bilingual language experiences to executive attention. Language, Cognition and Neuroscience, 33(9), 1128–1151. DOI logoGoogle Scholar
Yeung, N., & Cohen, J. D.
(2006) The impact of cognitive deficits on conflict monitoring: Predictable dissociations between the error-related negativity and N2. Psychological Science, 17, 164–171. DOI logoGoogle Scholar