Prelude as lifespan gauge
Quantifying psychological processes over time
David Thomson | Learning Evaluation and Assessment Psychology
Through multiple versions of Prelude, readers can follow the progress of a poem 41 years in the making, a period that exceeds by far the timeline of its narration. To do so I employed automated analysis platforms LIWC (Pennebaker, Chung, Ireland, Gonzales, & Booth, 2007a) and SEANCE (Crossley, Kyle, & McNamara, 2016). Results reveal that Wordsworth exhibited habits of mind resonant with maturation, especially in his increased positivity and abstraction. Discriminant function analysis revealed four psychological markers that almost completely identified shifts between editions. Indices connoting trust and sadness, as well as positive adjectives and the cognitive indicator of exclusion, accounted for 63 percent of the variance. The study offers a methodology for considering multiple versions of any text in which the passage of time becomes an important marker. I present these findings within a digital humanities framework and conclude by discussing applications.
Keywords: psychoinformatics, Wordsworth, digital humanities, sentiment analysis
Article outline
- Wordsworth’s preoccupation with time
- Prelude examined through the digital humanities
- Research questions
- Method
- Corpus
- Instruments
- Procedures
- Statistical analysis
- Concurrent validity
- Establishing tendencies of the meta-Prelude
- Results
- Q1
- Q2
- Magnitudes of difference
- Discriminant function analysis
- Discussion
- Future study and cautions
- Acknowledgements
-
References
Published online: 28 June 2018
https://doi.org/10.1075/ssol.16023.tho
https://doi.org/10.1075/ssol.16023.tho
References
Aue, A., & Gamon, M.
(2005) Customizing sentiment classifiers to new domains: A case study. In Proceedings of Recent Advances in Natural Language Processing. Retrieved from http://research.microsoft.com/pubs/65430/new_domain_sentiment.pdf
Abe, J. A.
Blitzer, J., Dredze, M., & Pereira, F.
(June 2007) Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. Paper presented at the conference of the Association of Computational Linguistics, Prague, Czech Republic.
Bottou, L., Haffner, P., Howard, P. G., Simard, P., Bengio, Y., & le Cun, Y.
Branch, L.
Brown, M. T., & Wicker, L. R.
Brown, N. M., Mendenhall, R., Black, M. L., Moer, M. V., Zerai, A., & Flynn, K.
Brose, A., Scheibe, S., & Schmiedek, F.
Burman, J. T., Green, C. D., & Shanker, S.
Cambria, E., Grassi, M., Hussain, A., & Havasi, C.
Cambria, E., Havasi, C., & Hussain, A.
(2012) SenticNet 2: A semantic and affective resource for opinion mining and sentiment analysis. In G. M. Youngblood & P. M. Mcarthy (Eds.), Proceedings of the 25th Florida artificial intelligence research society conference (pp. 202–207). Palo Alto, CA: The Association for the Advancement of Artificial Intelligence Press.
Cambria, E., Hussain, A., & Xia, Y.
(2012) Affective common sense knowledge acquisition for sentiment analysis. Paper presented at Language Resources and Evaluation, Istanbul.
Cambria, E., Poria, S., Gelbukh, A., & Thelwall, M.
Campbell, D. T., & Fiske, D. W.
Cohen, J.
Crossley, S. A., Kyle, K., & McNamara, D. S.
(2015) To aggregate or not? Linguistic features in automatic essay scoring and feedback systems. Journal of Writing Assessment, 81, 80. Retrieved from www.journalofwritingassessment.org/article.php?article=80
Crossley, S. A., Kyle, K., McNamara, D. S.
Davis, J. P.
Diehl, M., Hay, E., & Berg, K. M.
Donohue, W. A., Liang, Y., & Druckman, D.
Eijnatten, J. van., Pieters, T. & Verheul, J.
Fagnani, C., Medda, E., Stazi, M., Caprara, G. V., & Alessandri, G.
Felluga, D.
(2017) COVE: Central Online Victorian Educator. Retrieved from https://editions.covecollective.org/
Ferguson, C. J.
Fernandez, K. C., Gordon, E. A., Rodebaugh, T. L., & Heimberg, R. G.
Fernández-Cabana, M., García-Caballero, A., Alves-Pérez, M. T., García-García, M. J., & Mateos, R.
Graesser, A. C., McNamara, D. S., & Kulikowich, J.
Graham, S., & Perin, D.
Gravetter, F. J., & Wallnau, L. B.
Heuser, R. & Le-Khac, L.
(2012) A quantitative literary history of 2,958 nineteenth-century British novels: The semantic cohort method. Pamphlet 4 from Stanford Literary Lab. Retrieved from http://litlab.stanford.edu/LiteraryLabPamphlet4.pdf
Hu, M., & Liu, B.
Hutto, C. J., & Gilbert, E.
(2014) Vader: A parsimonious rule-based model for sentiment analysis of social media text. In E. Adar & P. Resnick (Eds.), Proceedings of the eighth international AAAI conference on weblogs and social media (pp. 216–225). Palo Alto, CA: Association for the Advancement of Artificial Intelligence Press.
Kaldenberg, E. R., Ganzeveld, P., Hosp, J. L., & Rodgers, D. B.
Kern, M. L., Eichstaedt, J. C., Schwartz, H. A., Park, G., Ungar, L. H., Stillwell, D. J., & Seligman, M. E. P.
Kousta, S., Vigliocco, G., Vinson, D. P., Andrews, M., & Campo, del E.
Kurtz, M. M., Ragland, J. D., Moberg, P. J., & Gur, R. C.
Lasswell, H. D., & Namenwirth, J. Z.
Maher, J. M., Markey, J. C., & Ebert-May, D.
Markowitz, D. M., & Hancock, J. T.
Mast, M. S., Gatica-Perez, D., Frauendorfer, D., Nguyen, L., & Choudhury, T.
Mohammad, S. M., & Turney, P. D.
Moretti, G., Sprugnoli, R., Menini, S., & Tonelli, S.
Nowviskie, B.
Ogden, J. T.
Pang, B., Lee, L., & Vaithyanathan, S.
(November 2002) Thumbs up? Sentiment classification using machine learning techniques. Paper presented at Association for Computational Linguistics, Stroudsburg, PA.
Pennebaker, J. W., & Stone, L. D.
Pennebaker, J. W., C. K. Chung, Ireland, M., A. Gonzales, & Booth, R. J.
Pennebaker, J. W., C. K. Chung, Ireland, M., Gonzales, A., & Booth, R. J.
Phillips, M. G., & Osmond, G.
Pilar Salas-Zárate, M. del, López-López, E., Valencia-García, R., Aussenac-Gilles, N., Almela, Á., & Alor-Hernández, G.
Poole, A. H.
Robinson, R. L., Navea, R., & Ickes, W.
Ruyskensvelde, S. van
Scherer, K. R.
Smyth, J.
Stone, P., Dunphy, D. C., Smith, M. S., Ogilvie, D. M., & Associates
Thomson, D.
Wilkens, M.
Wordsworth, W.
(1798) Tintern Abbey. Accessed March 20, 2017 from https://www.poetryfoundation.org/poems-and-poets/poems/detail/45527
(2017) Two addresses to the Freeholders of Westmoreland. Retrieved from https://www.gutenberg.org/
Wuensch, K.
Yarkoni, T.
Yu, Y., Duan, W., & Cao, Q.