References

References

Amedi, A., Floel, A., Knecht, S., Zohary, E., & Cohen, L. G.
(2004) Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat. Neurosci., 7, 1266–1270. CrossrefGoogle Scholar
Andin J., Orfanidou, E., Cardin, V., Holmer, E., Capek, C. M., Woll, B., Rönnberg, J., & Rudner, M.
(2013) Similar digit-based working memory in deaf signers and hearing non-signers despite digit span differences. Front. Psychol., 4, 942. Available at: http://​www​.pubmedcentral​.nih​.gov​/articlerender​.fcgi​?artid​=3863759​&tool​=pmcentrez​&rendertype​=abstract CrossrefGoogle Scholar
Auer, E. T., & Bernstein, L. E.
(1997) Speechreading and the structure of the lexicon: Computationally modeling the effects of reduced phonetic distinctiveness on lexical uniqueness. J. Acoust. Soc. Am., 102, 3704–3710. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/9407662 (Accessed 14 October, 2017). CrossrefGoogle Scholar
Baddeley, A.
(2012) Working memory: Theories, models, and controversies. Annu. Rev. Psychol., 63, 1–29 Available at: www​.annualreviews​.org (Accessed 14 October, 2017). CrossrefGoogle Scholar
Baddeley, A. D., & Hitch, G.
(1974) Working memory. Psychology of Learning and Motivation, 8, 47–89 Available at: http://​linkinghub​.elsevier​.com​/retrieve​/pii​/S0079742108604521 (Accessed 3 October, 2017). CrossrefGoogle Scholar
Baker C., & Padden, C.
(1978) Focussing on the non-manual components of ASL. In P. Siple (Ed.), Understanding language through sign language research (pp.27–57). New York, NY: Academic Press.Google Scholar
Beauchamp, M. S.
(2015) The social mysteries of the superior temporal sulcus. Trends Cogn. Sci., 19, 489–490 Available at: http://​linkinghub​.elsevier​.com​/retrieve​/pii​/S1364661315001539 (Accessed 4 October, 2017). CrossrefGoogle Scholar
Bedny, M., Richardson, H., & Saxe, R. (2015) “Visual” cortex responds to spoken language in blind children. J. Neurosci., 35, 11674–11681. CrossrefGoogle Scholar
Bernstein, L. E., & Liebenthal, E.
(2014) Neural pathways for visual speech perception. Front. Neurosci., 8, 386. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/25520611 (Accessed 4 October, 2017).Google Scholar
Bottari, D., Caclin, A., Giard, M.-H., & Pavani, F.
(2011) Changes in early cortical visual processing predict enhanced reactivity in deaf individuals. PLoS One, 6:e25607 Available at: http://​www​.pubmedcentral​.nih​.gov​/articlerender​.fcgi​?artid​=3183070​&tool​=pmcentrez​&rendertype​=abstract (Accessed 11 June, 2015). CrossrefGoogle Scholar
Bottari, D., Heimler, B., Caclin, A., Dalmolin, A., Giard, M.-H., & Pavani, F.
(2014) Visual change detection recruits auditory cortices in early deafness. Neuroimage, 94, 172–184 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/24636881 CrossrefGoogle Scholar
Botting, N., Jones, A., Marshall, C., Denmark, T., Atkinson, J., & Morgan, G.
(2017) Non-verbal executive function is mediated by language: A study of deaf and hearing children. Child Dev., 88, 1689–1700. CrossrefGoogle Scholar
Buchsbaum, B., Pickell, B., Love, T., Hatrak, M., Bellugi, U., & Hickok, G.
(2005) Neural substrates for verbal working memory in deaf signers: fMRI study and lesion case report. Brain Lang., 95, 265–272. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/16246734 (Accessed 20 June, 2014). CrossrefGoogle Scholar
Calvert, G. A., Bullmore, E., Brammer, M., Campbell, R., Williams, S., McGuire, P., & David, A.
(1997) Activation of auditory cortex during silent lipreading. Science, 276, 593–596. doi: CrossrefGoogle Scholar
Calvert, G. A., & Campbell, R.
(2003) Reading speech from still and moving faces: The neural substrates of visible speech. J. Cogn. Neurosci., 15, 57–70 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/12590843 (Accessed 31 October, 2018). CrossrefGoogle Scholar
Campbell, R.
(2008) The processing of audio-visual speech: Empirical and neural bases. Philos. Trans. R. Soc. L. B. Biol. Sci., 363,1001–1010. CrossrefGoogle Scholar
Campbell, R., & Macsweeney, M.
(2012) Brain bases for seeing speech: FMRI studies of speechreading. In G. Bailly, P. Perrier, & E. Vatikiotis-Bateson (Eds.), Audiovisual speech processing (pp.76–100). Cambridge: Cambridge University Press. Available at: http://​discovery​.ucl​.ac​.uk​/1407709/ (Accessed 11 June, 2015).
Capek, C. M., Macsweeney, M., Woll, B., Waters, D., McGuire, P. K., David, A. S., Brammer, M. J., & Campbell, R.
(2008a) Cortical circuits for silent speechreading in deaf and hearing people. Neuropsychologia, 46, 1233–1241. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/18249420 CrossrefGoogle Scholar
Capek, C. M., Waters, D., Woll, B., MacSweeney, M., Brammer, M. J., McGuire, P. K., David, A. S., & Campbell, R.
(2008b) Hand and mouth: Cortical correlates of lexical processing in British Sign Language and speechreading English. J. Cogn. Neurosci., 20, 1220–1234. Available at: http://​www​.pubmedcentral​.nih​.gov​/articlerender​.fcgi​?artid​=3370423​&tool​=pmcentrez​&rendertype​=abstract CrossrefGoogle Scholar
Capek, C. M., Woll, B., MacSweeney, M., Waters, D., McGuire, P. K., David, A. S., Brammer, M. J., & Campbell, R.
(2010) Superior temporal activation as a function of linguistic knowledge: Insights from deaf native signers who speechread. Brain Lang., 112, 129–134. Available at: http://​www​.pubmedcentral​.nih​.gov​/articlerender​.fcgi​?artid​=3398390​&tool​=pmcentrez​&rendertype​=abstract (Accessed 20 June, 2014). CrossrefGoogle Scholar
Cardin, V., Orfanidou, E., Kästner, L., Rönnberg, J., Woll, B., Capek, C. M., & Rudner, M. (2016) Monitoring different phonological parameters of sign language engages the same cortical language network but distinctive perceptual ones. J. Cogn. Neurosci., 28, 20–40. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/26351993 (Accessed 11 August, 2016). CrossrefGoogle Scholar
Cardin, V., Orfanidou, E., Rönnberg, J., Capek, C. M., Rudner, M., & Woll, B.
(2013) Dissociating cognitive and sensory neural plasticity in human superior temporal cortex. Nat. Commun., 4, 1473. Available at: http://​www​.nature​.com​/doifinder​/10​.1038​/ncomms2463 CrossrefGoogle Scholar
Cardin, V., Rudner, M., De Oliveira, R. F., Andin, J. T., Su, M., Beese, L., Woll, B., & Rönnberg, J.
(2018) The organization of working memory networks is shaped by early sensory experience. Cereb. Cortex, 28, 3540–3355. Available at: http://​academic​.oup​.com​/cercor​/article​/doi​/10​.1093​/cercor​/bhx222​/4097584​/The​-Organization​-of​-Working​-Memory​-Networks​-is (Accessed 3 October, 2017).Google Scholar
Corina, D., Chiu, Y.-S., Knapp, H., Greenwald, R., San Jose-Robertson, L., & Braun, A.
(2007) Neural correlates of human action observation in hearing and deaf subjects. Brain Res., 1152, 111–129. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/17459349 (Accessed 31 October, 2018). CrossrefGoogle Scholar
Corina, D., & Knapp, H.
(2006) Sign language processing and the mirror neuron system. Cortex, 42, 529–539. Available at: http://​www​.sciencedirect​.com​/science​/article​/pii​/S0010945208703939 (Accessed 27 June, 2014). CrossrefGoogle Scholar
Corina, D. P., McBurney, S. L., Dodrill, C., Hinshaw, K., Brinkley, J., & Ojemann, G.
(1999) Functional roles of Broca’s area and SMG: Evidence from cortical stimulation mapping in a deaf signer. Neuroimage, 10, 570–581. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/10547334 (Accessed 17 July, 2014). CrossrefGoogle Scholar
Cowan, N.
(2016) Working memory maturation: Can we get at the essence of cognitive growth? Perspect. Psychol. Sci., 11, 239–264. Available at: http://​journals​.sagepub​.com​/doi​/10​.1177​/1745691615621279 (Accessed 31 October, 2018). CrossrefGoogle Scholar
Daneman, M., & Merikle, P. M.
(1996) Working memory and language comprehension: A meta-analysis. Psychon. Bull. Rev., 3, 422–433. Available at: http://​www​.springerlink​.com​/index​/10​.3758​/BF03214546 (Accessed 3 October, 2017). CrossrefGoogle Scholar
Deen, B., Koldewyn, K., Kanwisher, N., & Saxe, R.
(2015) Functional organization of social perception and cognition in the superior temporal sulcus. Cereb. Cortex, 25, 4596–4609. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/26048954 (Accessed 4 October, 2017). CrossrefGoogle Scholar
Ding, H., Qin, W., Liang, M., Ming, D., Wan, B., Li, Q., Yu, C.
(2015) Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness. Brain, 138, 2750–2765. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/26070981 (Accessed 7 October, 2015). CrossrefGoogle Scholar
Dodd, B.
(1980) Interaction of auditory and visual information in speech perception. Br. J. Psychol., 71, 541–549. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/7437675 (Accessed 1 November, 2018). CrossrefGoogle Scholar
Dodd, B., & Campbell, R.
(1988) Hearing by eye: The psychology of lip-reading. Am. J. Psychol., 101, 598. Available at: http://​www​.jstor​.org​/stable​/1423237​?origin​=crossref (Accessed 4 October, 2017). CrossrefGoogle Scholar
Emmorey, K., McCullough, S., Mehta, S., Grabowski, T. J.
(2014) How sensory-motor systems impact the neural organization for language: Direct contrasts between spoken and signed language. Front. Psychol., 5, 484. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/24904497 (Accessed 9 August, 2016). CrossrefGoogle Scholar
Emmorey, K., McCullough, S., & Weisberg, J. (2016) The neural underpinnings of reading skill in deaf adults. Brain Lang., 160, 11–20. Available at: http://​linkinghub​.elsevier​.com​/retrieve​/pii​/S0093934X15300845 (Accessed 14 October, 2017). CrossrefGoogle Scholar
Feld, J. E., & Sommers, M. S.
(2009) Lipreading, processing speed, and working memory in younger and older adults. J. Speech Lang. Hear. Res., 52, 1555–1565 Available at: http://​jslhr​.pubs​.asha​.org​/article​.aspx​?doi​=10​.1044​/1092​-43882009​/08​-0137) (Accessed 1 November, 2018). CrossrefGoogle Scholar
Ferjan Ramirez, N., Leonard, M. K., Davenport, T. S., Torres, C., Halgren, E., & Mayberry, R. I.
(2016) Neural language processing in adolescent first-language learners: Longitudinal case studies in American Sign Language. Cereb. Cortex, 26(3), 1015–1026. doi: doi:CrossrefGoogle Scholar
Ferjan Ramirez, N., Leonard, M. K., Torres, C., Hatrak, M., Halgren, E., & Mayberry, R. I.
(2014) Neural language processing in adolescent first-language learners. Cereb. Cortex, 24, 2772–2783 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/23696277 (Accessed 31 October, 2018). CrossrefGoogle Scholar
Finney, E. M., Fine, I., Dobkins, K. R.
(2001) Visual stimuli activate auditory cortex in the deaf. Nat. Neurosci, 4, 1171–1173 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/11704763 CrossrefGoogle Scholar
Gathercole, S. E., & Baddeley, A. D.
(1993) Working memory and language. Hove: Psychology Press.Google Scholar
Glick, H., & Sharma, A.
(2017) Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications. Hear. Res., 343, 191–201. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/27613397 (Accessed November, 2018). CrossrefGoogle Scholar
Gutierrez-Sigut, E., Daws, R., Payne, H., Blott, J., Marshall, C., & MacSweeney, M.
(2015) Language lateralization of hearing native signers: A functional transcranial Doppler sonography (fTCD) study of speech and sign production. Brain Lang., 151, 23–34 Available at: http://​linkinghub​.elsevier​.com​/retrieve​/pii​/S0093934X15300870 (Accessed 14 October, 2017). CrossrefGoogle Scholar
Gutierrez-Sigut, E., Payne, H., & MacSweeney, M.
(2016) Examining the contribution of motor movement and language dominance to increased left lateralization during sign generation in native signers. Brain Lang., 159, 109–117 Available at: http://​linkinghub​.elsevier​.com​/retrieve​/pii​/S0093934X16300402 (Accessed 14 October, 2017). CrossrefGoogle Scholar
Hensch, T. K.
(2004) Critical period regulation. Annu. Rev. Neurosci., 27, 549–579. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/15217343 (Accessed 26 May, 2014). CrossrefGoogle Scholar
Hickok, G., Bellugi, U., & Klima, E. S.
(1996) The neurobiology of sign language and its implications for the neural basis of language. Nature, 381, 699–702. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/8649515 CrossrefGoogle Scholar
Hickok, G., & Poeppel, D.
(2007) The cortical organization of speech processing. Nat. Rev. Neurosci., 8, 393–402 Available at: http://​www​.nature​.com​/nrn​/journal​/v8​/n5​/abs​/nrn2113​.html (Accessed 20 June, 2014). CrossrefGoogle Scholar
Holland, S. K., Vannest, J., Mecoli, M., Jacola, L. M., Tillema, J.-M., Karunanayaka, P. R., Schmithorst, V. J., Yuan, W., Plante, E., & Byars, A. W.
(2007) Functional MRI of language lateralization during development in children. Int. J. Audiol., 46, 533–551. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/17828669 (Accessed 1 November, 2018). CrossrefGoogle Scholar
Holmer, E., Heimann, M., & Rudner, M.
(2016) Imitation, sign language skill and the developmental ease of language understanding (D-ELU) model. Front. Psychol., 7. Available at: http://​journal​.frontiersin​.org​/Article​/10​.3389​/fpsyg​.2016​.00107​/abstract (Accessed 3 October, 2017). CrossrefGoogle Scholar
Hornsby, B. W. Y. (2013) The effects of hearing aid use on listening effort and mental fatigue associated with sustained speech processing demands. Ear Hear., 34, 523–534 Available at: http://​content​.wkhealth​.com​/linkback​/openurl​?sid​=WKPTLP:landingpage​&an​=00003446​-201309000​-00001 (Accessed 31 October, 2018). CrossrefGoogle Scholar
Karns, C. M., Dow, M. W., & Neville, H. J.
(2012Altered cross-modal processing in the primary auditory cortex of congenitally deaf adults: A visual-somatosensory fMRI study with a double-flash illusion. J. Neurosci., 32, 9626–9638. CrossrefGoogle Scholar
Kral, A.
(2013) Auditory critical periods: A review from system’s perspective. Neuroscience, 247, 117–133. Available at: https://​www​.sciencedirect​.com​/science​/article​/pii​/S0306452213004338 (Accessed 26 June, 2018). CrossrefGoogle Scholar
Kyle, F. E., Campbell, R., Mohammed, T., Coleman, M., & Macsweeney, M.
(2013) Speechreading development in deaf and hearing children: Introducing the test of child speechreading. J. Speech Lang. Hear. Res., 5, 16–426. Available at: http://​jslhr​.pubs​.asha​.org​/article​.aspx​?doi​=10​.1044​/1092​-4388(2012​/12​-0039)(Accessed 14 October, 2017). CrossrefGoogle Scholar
Lenneberg, E. H.
(1967) Biological foundations of language. New York, NY: John Wiley and Sons. CrossrefGoogle Scholar
Leonard, M. K., Ferjan-Ramirez, N., Torres, C., Travis, K. E., Hatrak, M., Mayberry, R., & Halgren, E.
(2012) Signed words in the congenitally deaf evoke typical late lexicosemantic responses with no early visual responses in left superior temporal cortex. J. Neurosci., 32, 9700–9705. CrossrefGoogle Scholar
Lomber, S. G., Meredith, M. A. , & Kral, A.
(2010) Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat. Neurosci., 13, 1421–1427. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/2093564 CrossrefGoogle Scholar
Ludman, C., Summerfield, A. Q., Hall, D., Elliott, M., Fostevr, J., Hykin, J., Bowtell, R., & Morris, P.
(2000) Lip-reading ability and patterns of cortical activation studied using fMRI. Br. J. Audiol., 34, 225–230. CrossrefGoogle Scholar
Lyness, C. R., Woll, B., Campbell, R., & Cardin, V.
(2013) How does visual language affect crossmodal plasticity and cochlear implant success? Neurosci. Biobehav. Rev., 37, 2621–2630. CrossrefGoogle Scholar
MacSweeney, M., Campbell, R., Woll, B., Giampietro, V., David, A. S., McGuire, P. K., Calvert, G. A, & Brammer, M. J.
(2004) Dissociating linguistic and nonlinguistic gestural communication in the brain. Neuroimage, 22, 1605–1618. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/15275917 (Accessed 27 May, 2014). CrossrefGoogle Scholar
MacSweeney, M., Capek, C. M., Campbell, R., & Woll, B.
(2008a) The signing brain: The neurobiology of sign language. Trends Cog. Sci., 12, 432–440. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/18805728 CrossrefGoogle Scholar
MacSweeney, M., Waters, D., Brammer, M. J., Woll, B., & Goswami, U.
(2008b) Phonological processing in deaf signers and the impact of age of first language acquisition. Neuroimage, 40, 1369–1379. CrossrefGoogle Scholar
MacSweeney, M., Woll, B., Campbell, R., Calvert, G. A., McGuire, P. K., David, A. S., Simmons, A., & Brammer, M. J.
(2002a) Neural correlates of British sign language comprehension: Spatial processing demands of topographic language. J. Cogn. Neurosci., 14, 1064–1075 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/12419129 (Accessed 14 October, 2017). CrossrefGoogle Scholar
MacSweeney, M., Woll, B., Campbell, R., McGuire, P. K., David, A. S., Williams, S. C. R., Suckling, J., Calvert, G. A., Brammer, M. J.
(2002b) Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain, 125, 1583–1593 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/12077007 CrossrefGoogle Scholar
Marshall, C., Jones, A., Denmark, T., Mason, K., Atkinson, J., Botting, N., & Morgan, G. (2015) Deaf children’s non-verbal working memory is impacted by their language experience. Front. Psychol., 6, 527. Available at: http://​www​.pubmedcentral​.nih​.gov​/articlerender​.fcgi​?artid​=4419661​&tool​=pmcentrez​&rendertype​=abstract (Accessed 8 October, 2015). CrossrefGoogle Scholar
Marshall, J., Atkinson, J., Woll, B., & Thacker, A.
(2005) Aphasia in a bilingual user of British signlanguage and english: Effects of cross-linguistic cues. Cogn. Neuropsychol., 22, 719–736 Available at: http://​www​.tandfonline​.com​/doi​/abs​/10​.1080​/02643290442000266 (Accessed 14 October, 2017). CrossrefGoogle Scholar
Mayberry, R. I., Chen, J.-K., Witcher, P., & Klein, D.
(2011) Age of acquisition effects on the functional organization of language in the adult brain. Brain Lang., 119, 16–29 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/21705060 (Accessed 28 May, 2014). CrossrefGoogle Scholar
Mayberry, R. I., Lock, E., & Kazmi, H.
(2002) Linguistic ability and early language exposure. Nature, 417, 38 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/11986658 CrossrefGoogle Scholar
McCullough, S., Saygin, A. P., Korpics, F., & Emmorey, K.
(2012) Motion-sensitive cortex and motion semantics in American Sign Language. Neuroimage, 63, 111–118. Available at: http://​linkinghub​.elsevier​.com​/retrieve​/pii​/S105381191200643X (Accessed 14 October, 2017). CrossrefGoogle Scholar
Mayberry R. I., Lock E.
(2003 Dec) Age constraints on first versus second language acquisition: evidence for linguistic plasticity and epigenesis. Brain Lang 87(3), 369–84. Google Scholar
Merabet, L. B., & Pascual-Leone, A.
(2010) Neural reorganization following sensory loss: The opportunity of change. Nat. Rev. Neurosci., 11, 44–52. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/19935836 CrossrefGoogle Scholar
Mercure, E., Kushnerenko, E., Goldberg L., Bowden-Howl, H., Coulson, K., Johnson, M. H., & MacSweeney, M.
(2018) Language experience influences audiovisual speech integration in unimodal and bimodal bilingual infants. Dev. Sci, e12701 Available at: http://​doi​.wiley​.com​/10​.1111​/desc​.12701 (Accessed 31 October, 2018).Google Scholar
Mohammed, T., Campbell, R., Macsweeney, M., Barry, F., & Coleman, M.
(2006) Speechreading and its association with reading among deaf, hearing and dyslexic individuals. In Clinical linguistics and phonetics (pp.621–630). Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/17056494 (Accessed 14 October, 2017).Google Scholar
Neville, H. J., & Bavelier, D.
(1998) Neural organization and plasticity of language. Curr. Opin. Neurobiol., 8, 254–258. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/9635210 (Accessed 1 November, 2018). CrossrefGoogle Scholar
Newman, A. J., Supalla, T., Fernandez, N., Newport, E. L., & Bavelier, D.
(2015) Neural systems supporting linguistic structure, linguistic experience, and symbolic communication in sign language and gesture. Proc. Natl. Acad. Sci., 112, 11684–11689. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/26283352 (Accessed 14 October, 2017). CrossrefGoogle Scholar
Nishimura, H., Hashikawa, K., Doi, K., Iwaki, T., Watanabe, Y., Kusuoka, H., Nishimura, T., & Kubo, T.
(1999) Sign language “heard” in the auditory cortex. Nature, 397, 116 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/9923672 CrossrefGoogle Scholar
Pa, J., Wilson, S. M., Pickell, H., Bellugi, U., & Hickok, G.
(2009) Neural organization of linguistic short-term memory is sensory modality-dependent: Evidence from signed and spoken language. Journal of Cognitive Neuroscience, 20(12), 2198–2210.Google Scholar
Pierce, L. J., Genesee, F., Delcenserie, A., & Morgan, G.
(2017) Variations in phonological working memory: Linking early language experiences and language learning outcomes. Appl. Psycholinguist., 38, 1265–1300 Available at: https://​www​.cambridge​.org​/core​/product​/identifier​/S0142716417000236​/type​/journal​_article (Accessed 16 March, 2018). CrossrefGoogle Scholar
Rauschecker, J. P., & Scott, S. K. (2009) Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nat. Neurosci., 12, 718–724 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/19471271 CrossrefGoogle Scholar
Röder, B., Stock, O., Bien, S., Neville, H., & Rösler, F.
(2002) Speech processing activates visual cortex in congenitally blind humans. Eur. J. Neurosci., 16, 930–936. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/12372029 (Accessed 2 August, 2016). CrossrefGoogle Scholar
Rönnberg, J., Holmer, E., & Rudner, M.
(2019) Cognitive hearing science and ease of language understanding. International Journal of Audiology. Doi Crossref [Epub ahead of print].
Rönnberg, J., Lunner, T., Zekveld, A., Sörqvist, P., Danielsson, H., Lyxell, B., Dahlström, Ö., Signoret, C., Stenfelt, S., Pichora-Fuller, M. K., & Rudner, M.
(2013) The Ease of Language Understanding (ELU) model: Theoretical, empirical, and clinical advances. Front. Syst. Neurosci., 7. Available at: http://​journal​.frontiersin​.org​/article​/10​.3389​/fnsys​.2013​.00031​/abstract (Accessed 3 October, 2017).Google Scholar
Rönnberg, J., Rudner, M., & Ingvar, M.
(2004) Neural correlates of working memory for sign language. Brain Res. Cogn. Brain Res., 20, 165–182 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/15183389 (Accessed 28 May, 2014). CrossrefGoogle Scholar
Rudner, M.
(2015) Working memory for meaningless manual gestures. Can. J. Exp. Psychol. Can. Psychol. Expérimentale, 69, 72–79. Available at: http://​doi​.apa​.org​/getdoi​.cfm​?doi​=10​.1037​/cep0000033 (Accessed 3 October, 2017). CrossrefGoogle Scholar
(2018) Working memory for linguistic and non-linguistic manual gestures: Evidence, theory, and application. Front. Psychol., 9, 679. CrossrefGoogle Scholar
Rudner, M., Foo, C., Rönnberg, J., & Lunner, T.
(2009) Cognition and aided speech recognition in noise: Specific role for cognitive factors following nine-week experience with adjusted compression settings in hearing aids. Scan. J. Psychol., 50, 405–418. CrossrefGoogle Scholar
Rudner, M., Fransson, P., Ingvar, M., Nyberg, L., & Rönnberg, J.
(2007.) Neural representation of binding lexical signs and words in the episodic buffer of working memory. Neuropsychologia, 45, 2258–2276. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/17403529 (Accessed 16 June, 2014). CrossrefGoogle Scholar
Rudner, M., Karlsson, T., Gunnarsson, J., & Rönnberg, J.
(2013) Levels of processing and language modality specificity in working memory. Neuropsychologia, 51, 656–666 Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/23287569 (Accessed 24 May, 2014). CrossrefGoogle Scholar
Rudner, M., Orfanidou, E., Cardin, V., Capek, C. M., Woll, B., & Rönnberg, J.
(2016) Preexisting semantic representation improves working memory performance in the visuospatial domain. Mem. Cognit., 44, 608–620. Available at: http://​link​.springer​.com​/10​.3758​/s13421​-016​-0585​-z (Accessed 3 October, 2017). CrossrefGoogle Scholar
Rudner, M., & Rönnberg, J.
(2019) Working memory for signs and gestures. In M. Marschark & P. E. Spencer, Oxford handbook of deaf studies in language. Oxford: Oxford University Press.Google Scholar
(2008) The role of the episodic buffer in working memory for language processing. Cogn. Process., 9, 19–28. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/17917753 (Accessed 16 June, 2014). CrossrefGoogle Scholar
Signoret, C., Johnsrude, I., Classon, E., & Rudner, M.
(2018) Combined effects of form- and meaning-based predictability on perceived clarity of speech. J. Exp. Psychol. Hum. Percept. Perform., 44, 277–285. Available at: http://​doi​.apa​.org​/getdoi​.cfm​?doi​=10​.1037​/xhp0000442 (Accessed 3 October, 2017). CrossrefGoogle Scholar
Söderfeldt, B., Ingvar, M., Rönnberg, J., Eriksson, L., Serrander, M., & Stone-Elander, S. (1997) Signed and spoken language perception studied by positron emission tomography. Neurology, 49, 82–87. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/9222174 CrossrefGoogle Scholar
Sorqvist, P., & Rönnberg, J.
(2012) Episodic long-term memory of spoken discourse masked by speech: What is the role for working memory capacity? J. Speech Lang. Hear. Res., 55, 210–218. CrossrefGoogle Scholar
Sutton-Spence, R., & Woll, B.
(1999) The linguistics of British Sign Language: An introduction. Cambridge: Cambridge University Press. CrossrefGoogle Scholar
Tamati, T. N., Gilbert, J. L., & Pisoni, D. B.
(2013) Some factors underlying individual differences in speech recognition on PRESTO: A first report. J. Am. Acad. Audiol., 24, 616–634 Available at: http://​openurl​.ingenta​.com​/content​/xref​?genre​=article​&issn​=1050​-0545​&volume​=24​&issue​=7​&spage​=616 (Accessed 14 October, 2017). CrossrefGoogle Scholar
Twomey, T., Waters, D., Price, C. J., Evans, S., & MacSweeney, M.
(2017) How auditory experience differentially influences the function of left and right superior temporal cortices. J. Neurosci., 37, 9564–9573 Available at: http://​www​.jneurosci​.org​/lookup​/doi​/10​.1523​/JNEUROSCI​.0846​-17​.2017 (Accessed 14 October, 2017). CrossrefGoogle Scholar
Venezia, J. H., Vaden, K. I., Rong, F., Maddox, D., Saberi, K., & Hickok, G.
(2017) Auditory, visual and audiovisual speech processing streams in superior temporal sulcus. Front. Hum. Neurosci., 11. Available at: http://​journal​.frontiersin​.org​/article​/10​.3389​/fnhum​.2017​.00174​/full (Accessed 4 October, 2017).Google Scholar
Wilson, M.
(2001) The case for sensorimotor coding in working memory. Psychon. Bull. Rev., 8, 44–57. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/11340866 (Accessed 4 October, 2017). CrossrefGoogle Scholar
Wilson, M., & Emmorey, K.
(1997) A visuospatial “phonological loop” in working memory: Evidence from American Sign Language. Mem. Cognit., 25, 313–320. Available at: http://​www​.ncbi​.nlm​.nih​.gov​/pubmed​/9184483 (Accessed 3 October, 2017). CrossrefGoogle Scholar
Zosh, J. M., & Feigenson, L.
(2015) Array heterogeneity prevents catastrophic forgetting in infants. Cognition, 136, 365–380 Available at: https://​linkinghub​.elsevier​.com​/retrieve​/pii​/S0010027714002686 (Accessed 31 October, 2018). CrossrefGoogle Scholar
Cited by

Cited by other publications

Naranjo-Zeledón, Luis, Mario Chacón-Rivas, Jesús Peral & Antonio Ferrández
2020. Phonological Proximity in Costa Rican Sign Language. Electronics 9:8  pp. 1302 ff. Crossref logo

This list is based on CrossRef data as of 04 october 2020. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.