Article published In:
Translation and Interpreting Studies
Vol. 2:1 (2007) ► pp.83136
Cited by

Cited by 20 other publications

Alvarez-Vidal, Sergi & Antoni Oliver
2023. Assessing MT with measures of PE effort. Ampersand 11  pp. 100125 ff. DOI logo
Alves, Fabio, Arlene Koglin, Bartolomé Mesa-Lao, Mercedes García Martínez, Norma B. de Lima Fonseca, Arthur de Melo Sá, José Luiz Gonçalves, Karina Sarto Szpak, Kyoko Sekino & Marceli Aquino
2016. Analysing the Impact of Interactive Machine Translation on Post-editing Effort. In New Directions in Empirical Translation Process Research [New Frontiers in Translation Studies, ],  pp. 77 ff. DOI logo
Jia, Yanfang, Michael Carl & Xiangling Wang
2019. Post-editing neural machine translation versus phrase-based machine translation for English–Chinese. Machine Translation 33:1-2  pp. 9 ff. DOI logo
Jiménez-Crespo, Miguel A. & Joseph V. Casillas
2021. Literal is not always easier. Translation, Cognition & Behavior 4:1  pp. 98 ff. DOI logo
Karamanis, Nikiforos, Saturnino Luz & Gavin Doherty
2011. Translation practice in the workplace: contextual analysis and implications for machine translation. Machine Translation 25:1  pp. 35 ff. DOI logo
Koby, Geoffrey S.
2012. Post‐Editing of Machine Translation. In The Encyclopedia of Applied Linguistics, DOI logo
Mellinger, Christopher D.
2017. Translators and machine translation: knowledge and skills gaps in translator pedagogy. The Interpreter and Translator Trainer 11:4  pp. 280 ff. DOI logo
Mellinger, Christopher D.
2018. Re-thinking translation quality. Target. International Journal of Translation Studies  pp. 310 ff. DOI logo
Munková, Daša, Oľga Wrede & Jakub Absolon
2019. Vergleich der menschlichen, maschinellen und Post-Editing-Übersetzung aus dem Slowakischen ins Deutsche mittels automatischer Evaluation. Zeitschrift für Slawistik 64:2  pp. 231 ff. DOI logo
O’Brien, Sharon
2011. Towards predicting post-editing productivity. Machine Translation 25:3  pp. 197 ff. DOI logo
Pym, Anthony
2014. Translation Skill-Sets in a Machine-Translation Age. Meta 58:3  pp. 487 ff. DOI logo
Rico, Celia
2022. Mind the gap. Babel. Revue internationale de la traduction / International Journal of Translation 68:5  pp. 697 ff. DOI logo
Screen, Benjamin
2017. Productivity and quality when editing machine translation and translation memory outputs: an empirical analysis of English to Welsh translation. Studia Celtica Posnaniensia 2:1  pp. 1 ff. DOI logo
Sun, Sanjun
2019. Measuring Difficulty in Translation and Post-editing: A Review. In Researching Cognitive Processes of Translation [New Frontiers in Translation Studies, ],  pp. 139 ff. DOI logo
Walker, Callum
2021. Eye-Tracking the Reader Experience. In An Eye-Tracking Study of Equivalent Effect in Translation,  pp. 215 ff. DOI logo
Wang, Yu & Ali Jalalian Daghigh
2023. Cognitive effort in human translation and machine translation post-editing processes. FORUM. Revue internationale d’interprétation et de traduction / International Journal of Interpretation and Translation 21:1  pp. 139 ff. DOI logo
Yamada, Masaru
2015. Can college students be post-editors? An investigation into employing language learners in machine translation plus post-editing settings. Machine Translation 29:1  pp. 49 ff. DOI logo
Yang, Yanxia, Xiangling Wang & Qingqing Yuan
2021. Measuring the usability of machine translation in the classroom context. Translation and Interpreting Studies 16:1  pp. 101 ff. DOI logo
Łoboda, Krzysztof & Olga Mastela
2023. Machine translation and culture-bound texts in translator education: a pilot study. The Interpreter and Translator Trainer 17:3  pp. 503 ff. DOI logo
마승혜
2018. Expanding the Scope of Machine Translation-Machine Translation Post Editing Strategies for Specific Metaphors in Newspapers. The Journal of Translation Studies 19:2  pp. 117 ff. DOI logo

This list is based on CrossRef data as of 1 december 2023. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.