Article published In:
Translation Spaces
Vol. 6:2 (2017) ► pp.291309


Arthur, Philip, Graham Neubig, and Satoshi Nakamura
2016 “Incorporating Discrete Translation Lexicons into Neural Machine Translation.” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (Austin, Texas, November 1–5, 2016). 1557–1567. DOI logoGoogle Scholar
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio
2014 “Neural Machine Translation by Jointly Learning to Align and Translate”, eprint arXiv:1409.0473 ([URL]). Google Scholar
Bentivogli, Luisa, Arianna Bisazza, Mauro Cettolo, and Marcello Federico
2016 “Neural versus Phrase-Based Machine Translation Quality: A Case Study.” in Proceedings of Conference on Empirical Methods in Natural Language Processing. EMNLP: Texas (USA). 257–267. (eprint arXiv:1608.04631 [URL]). DOI logo
Bojar, Ondrej, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri
2016 “Findings of the 2016 Conference on Machine Translation.” in Proceedings of the First Conference on Machine Translation (Berlin, Germany, August). 131–198.Google Scholar
Castilho, Sheila, Joss Moorkens, Federico Gaspari, Iacer Calixto, John Tinsley, and Andy Way
2017 “Is Neural Machine Translation the New State of the Art?Prague Bulletin of Mathematical Linguistics 108(1): 109–120. DOI logoGoogle Scholar
Cho, Kyunghyun, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio
2014 “On the Properties of Neural Machine Translation: Encoder-Decoder Approaches.” eprint arXiv:1409.1259 ([URL]).
Forcada, Mikel L., and Ramón P. Ñeco
1997 “Recursive hetero-associative memories for translation” in Biological and Artificial Computation: From Neuroscience to Technology (International Work-Conference on Artificial and Natural Neural Networks, IWANN’97 Lanzarote, Canary Islands, Spain, June 4–6, 1997, Proceedings), edited by José Mira, Roberto Moreno-Díaz, and Joan Cabestany. Heidelberg: Springer. 453–462.Google Scholar
Forcada, Mikel L.
2010 “Machine Translation Today”, in Handbook of Translation Studies, edited by Yves Gambier, Luc Van Doorslaer. vol. 11, 215–223. DOI logoGoogle Scholar
Foster, George, Pierre Isabelle, and Pierre Plamondon
1997 “Target-Text Mediated Interactive Machine Translation.” Machine Translation 12(1). 175–194. DOI logoGoogle Scholar
Gehring, Jonas, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin
2017 “Convolutional Sequence to Sequence Learning.” eprint arXiv:1705.03122 (eprint arXiv: 1705.03122 [URL]).
Haddow, Barry
2017Personal communication.Google Scholar
Hearne, Mary, and Andy Way
2011 “Statistical Machine Translation: A Guide for Linguists and Translators.” Language and Linguistics Compass 5(5). 205–226. DOI logoGoogle Scholar
Hochreiter, Sepp, and Jürgen Schmidhuber
1997 “Long short-term memory.” Neural Computation 9(8).1735–1780. DOI logoGoogle Scholar
Koehn, Philipp
2010Statistical Machine Translation. Cambridge, Mass., USA: MIT Press.Google Scholar
Levin, Pavel, Nishikant Dhanuka, and Maxim Khalilov
2017 “Machine Translation at Journey and Lessons Learned.” in The 20th Annual Conference of the European Association for Machine Translation (29–31 May 2017, Prague, Czech Republic): Conference Booklet, User Studies and Project/Product Descriptions. 81–86.Google Scholar
Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean
2013a “Efficient Estimation of Word Representations in Vector Space.” in Proceedings of the International Conference on Learning Representations (also available as eprint arXiv: 1301.3781 [URL]).
Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig
2013b “Linguistic Regularities in Continuous Space Word Representations.” in Proceedings of NAACL-HLT 2013 (Atlanta, Georgia, 9–14 June 2013), 746–751.Google Scholar
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu
2002 “BLEU: A Method for Automatic Evaluation of Machine Translation.” Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 311–318.Google Scholar
Peris, Álvaro, Miguel Domingo, and Francisco Casacuberta
2017 “Interactive Neural Machine Translation.” Computer Speech and Language 451, 201–220. DOI logoGoogle Scholar
Sennrich, Rico, Barry Haddow, and Alexandra Birch
2016Neural Machine Translation of Rare Words with Subword Units.” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 1715–1725 (Also eprint arXiv: 1508.07909: [URL]).
Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio Miceli Barone, Jozef Mokry, and Maria Nădejde
2017 “Nematus: A Toolkit for Neural Machine Translation” eprint arXiv:1703.04357 ([URL]).
Shterionov, Dimitar, Pat Nagle, Laura Casanellas, Riccardo Superbo, and Tony O’Dowd
2017 “Empirical Evaluation of NMT and PBSMT Quality for Large-Scale Translation Production” in The 20th Annual Conference of the European Association for Machine Translation (29–31 May 2017, Prague, Czech Republic): Conference Booklet, User Studies and Project/Product Descriptions. 75–80.Google Scholar
Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le
2014 “Sequence to Sequence Learning with Neural Networks”, in Advances in Neural Information Processing Systems, edited by Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger. p. 3104–3112.Google Scholar
Toral, Antonio, and Víctor M. Sánchez-Cartagena
2017 “A Multifaceted Evaluation of Neural versus Phrase-Based Machine Translation for 9 Language Directions” in Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (Valencia, Spain, April 3–7, 2017), Volume 1, Long Papers. 1063–1073.Google Scholar
Vashee, Kirti
2016 “The Google Neural Machine Translation Marketing Deception”, [URL]
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin
2017 “Attention is all you need.” eprint arXiv:1706.03762 ([URL]).
Way, Andy, and Mary Hearne
2011 “On the Role of Translations in State-of-the-Art Statistical Machine Translation.” Language and Linguistics Compass 5:51, 227–248. DOI logoGoogle Scholar
Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean
2017Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation”, eprint arXiv:1609.08144 ([URL]).
Cited by

Cited by 55 other publications

Almanna, Ali & Rafik Jamoussi
2022. NMT verb rendering: A cognitive approach to informing Arabic-into-English post-editing. Open Linguistics 8:1  pp. 310 ff. DOI logo
Alwazna, Rafat Y.
2024. The use of automation in the rendition of certain articles of the Saudi Commercial Law into English: a post-editing-based comparison of five machine translation systems. Frontiers in Artificial Intelligence 6 DOI logo
Asscher, Omri
2024. The explanatory power of descriptive translation studies in the machine translation era. Perspectives 32:2  pp. 261 ff. DOI logo
Asscher, Omri & Ella Glikson
2023. Human evaluations of machine translation in an ethically charged situation. New Media & Society 25:5  pp. 1087 ff. DOI logo
Bedecho, Aklilu Thomas & Michael Melese Woldeyohannis
2022. 2022 International Conference on Information and Communication Technology for Development for Africa (ICT4DA),  pp. 96 ff. DOI logo
Bowker, Lynne
2020. Chinese speakers’ use of machine translation as an aid for scholarly writing in English: a review of the literature and a report on a pilot workshop on machine translation literacy. Asia Pacific Translation and Intercultural Studies 7:3  pp. 288 ff. DOI logo
Bowker, Lynne
2020. Machine translation literacy instruction for international business students and business English instructors. Journal of Business & Finance Librarianship 25:1-2  pp. 25 ff. DOI logo
Bowker, Lynne & Frédéric Blain
2022. When French becomes Canadian French. The Journal of Internationalization and Localization 9:1  pp. 1 ff. DOI logo
Briva-Iglesias, Vicent
2021. Traducción humana vs. traducción automática: análisis contrastivo e implicaciones para la aplicación de la traducción automática en traducción jurídica. Mutatis Mutandis. Revista Latinoamericana de Traducción 14:2  pp. 571 ff. DOI logo
Calvo-Ferrer, José Ramón
2023. Can you tell the difference? A study of human vs machine-translated subtitles. Perspectives  pp. 1 ff. DOI logo
Cennamo, Ilaria & Loïc de Faria Pires
2022. Intelligence artificielle et traduction. FORUM. Revue internationale d’interprétation et de traduction / International Journal of Interpretation and Translation 20:2  pp. 333 ff. DOI logo
Cid, Clara Ginovart, Carme Colominas & Antoni Oliver
2020. Language industry views on the profile of the post-editor. Translation Spaces 9:2  pp. 283 ff. DOI logo
de Faria Pires, Loïc
2020. Master’s students’ post-editing perception and strategies. FORUM. Revue internationale d’interprétation et de traduction / International Journal of Interpretation and Translation 18:1  pp. 26 ff. DOI logo
Delorme Benites, Alice, Sara Cotelli Kureth, Caroline Lehr & Elizabeth Steele
2021. Machine translation literacy: a panorama of practices at Swiss universities and implications for language teaching. In CALL and professionalisation: short papers from EUROCALL 2021,  pp. 80 ff. DOI logo
do Carmo, Félix
2021. Editing Actions: A Missing Link Between Translation Process Research and Machine Translation Research. In Explorations in Empirical Translation Process Research [Machine Translation: Technologies and Applications, 3],  pp. 3 ff. DOI logo
Ehrensberger-Dow, Maureen, Alice Delorme Benites & Caroline Lehr
2023. A new role for translators and trainers: MT literacy consultants. The Interpreter and Translator Trainer 17:3  pp. 393 ff. DOI logo
Forcada, Mikel L.
2023. Licensing and Usage Rights of Language Data in Machine Translation. In Towards Responsible Machine Translation [Machine Translation: Technologies and Applications, 4],  pp. 49 ff. DOI logo
Haddow, Barry, Alexandra Birch & Kenneth Heafield
2021. Machine translation in healthcare. In The Routledge Handbook of Translation and Health,  pp. 108 ff. DOI logo
Hongtao, Wang
2023. Defending the last bastion. Babel. Revue internationale de la traduction / International Journal of Translation DOI logo
Karimova, Sariya, Patrick Simianer & Stefan Riezler
2018. A user-study on online adaptation of neural machine translation to human post-edits. Machine Translation 32:4  pp. 309 ff. DOI logo
Killman, Jeffrey
2023. Machine translation and legal terminology. In Handbook of Terminology [Handbook of Terminology, 3],  pp. 485 ff. DOI logo
Killman, Jeffrey
2023. Rendering Morphosyntactic Features of Legal Spanish Judgments Using Neural and Statistical Machine Translation. In New Advances in Legal Translation and Interpreting [New Frontiers in Translation Studies, ],  pp. 221 ff. DOI logo
Killman, Jeffrey
2024. Machine translation literacy in the legal translation context: a SWOT analysis perspective. The Interpreter and Translator Trainer  pp. 1 ff. DOI logo
Kim, Joosung, Soo Hyun Kim & Inwhee Joe
2024. Development and Proposal of Military Artificial Intelligence Battlefield Noise Cancellation Model for Secure Joint Operations. In Software Engineering Methods in Systems and Network Systems [Lecture Notes in Networks and Systems, 934],  pp. 492 ff. DOI logo
Klimova, Blanka, Marcel Pikhart, Alice Delorme Benites, Caroline Lehr & Christina Sanchez-Stockhammer
2023. Neural machine translation in foreign language teaching and learning: a systematic review. Education and Information Technologies 28:1  pp. 663 ff. DOI logo
Lankford, Séamus, Haithem Afli & Andy Way
2023. adaptNMT: an open-source, language-agnostic development environment for neural machine translation. Language Resources and Evaluation 57:4  pp. 1671 ff. DOI logo
Lee, Jieun & Hyoeun Choi
2023. A quality assessment of Korean–English patent machine translation. FORUM. Revue internationale d’interprétation et de traduction / International Journal of Interpretation and Translation 21:2  pp. 236 ff. DOI logo
Li, Congli & Zhiguo Qu
2022. A Study on Chinese-English Machine Translation Based on Transfer Learning and Neural Networks. Wireless Communications and Mobile Computing 2022  pp. 1 ff. DOI logo
Li, Jingyun & Kuruva Lakshmanna
2022. Application of Machine Learning Combined with Wireless Network in Design of Online Translation System. Wireless Communications and Mobile Computing 2022  pp. 1 ff. DOI logo
Liu, Yiguang & Junying Liang
2024. Multidimensional comparison of Chinese-English interpreting outputs from human and machine: Implications for interpreting education in the machine-translation age. Linguistics and Education 80  pp. 101273 ff. DOI logo
Lo, Siowai
2023. Neural machine translation in EFL classrooms: learners’ vocabulary improvement, immediate vocabulary retention and delayed vocabulary retention. Computer Assisted Language Learning  pp. 1 ff. DOI logo
Lo, Siowai
2024. The effects of NMT as a de facto dictionary on vocabulary learning: a comparison of three look-up conditions. Computer Assisted Language Learning  pp. 1 ff. DOI logo
Lohar, Pintu, Guodong Xie, Daniel Gallagher & Andy Way
2023. Building Neural Machine Translation Systems for Multilingual Participatory Spaces. Analytics 2:2  pp. 393 ff. DOI logo
Matos Veliz, Claudia, Orphée De Clercq & Veronique Hoste
2021. Is neural always better? SMT versus NMT for Dutch text normalization. Expert Systems with Applications 170  pp. 114500 ff. DOI logo
Melby, Alan K. & Daryl R. Hague
2019. A singular(ity) preoccupation. In The Evolving Curriculum in Interpreter and Translator Education [American Translators Association Scholarly Monograph Series, XIX],  pp. 205 ff. DOI logo
Moorkens, Joss
2018. What to expect from Neural Machine Translation: a practical in-class translation evaluation exercise. The Interpreter and Translator Trainer 12:4  pp. 375 ff. DOI logo
Moorkens, Joss, Antonio Toral, Sheila Castilho & Andy Way
Munkova, Dasa, Michal Munk, Ľubomír Benko, Jiri Stastny & Wen-Long Shang
2021. MT Evaluation in the Context of Language Complexity. Complexity 2021  pp. 1 ff. DOI logo
O'Brien, Sharon
2021. Post-editing. In Handbook of Translation Studies [Handbook of Translation Studies, 5],  pp. 178 ff. DOI logo
O’Brien, Sharon
2020. Translation, human–computer interaction and cognition 1. In The Routledge Handbook of Translation and Cognition,  pp. 376 ff. DOI logo
O’Brien, Sharon & Maureen Ehrensberger-Dow
2020. MT Literacy—A cognitive view. Translation, Cognition & Behavior 3:2  pp. 145 ff. DOI logo
Paulsen Christensen, Tina, Kristine Bundgaard, Anne Schjoldager & Helle Dam Jensen
2022. What motor vehicles and translation machines have in common - a first step towards a translation automation taxonomy. Perspectives 30:1  pp. 19 ff. DOI logo
Ragni, Valentina & Lucas Nunes Vieira
2022. What has changed with neural machine translation? A critical review of human factors. Perspectives 30:1  pp. 137 ff. DOI logo
Riemland, Matt
2023. Theorizing sustainable, low-resource MT in development settings. Translation Spaces 12:2  pp. 231 ff. DOI logo
Rodríguez Vázquez, Silvia, Abigail Kaplan, Pierrette Bouillon, Cornelia Griebel & Razieh Azari
2022. La traduction automatique des textes faciles à lire et à comprendre (FALC) : une étude comparative. Meta 67:1  pp. 18 ff. DOI logo
Sakamoto, Akiko
2022. Translation and Technology. In The Cambridge Handbook of Translation,  pp. 55 ff. DOI logo
Steigerwald, Emma, Valeria Ramírez-Castañeda, Débora Y C Brandt, András Báldi, Julie Teresa Shapiro, Lynne Bowker & Rebecca D Tarvin
2022. Overcoming Language Barriers in Academia: Machine Translation Tools and a Vision for a Multilingual Future. BioScience 72:10  pp. 988 ff. DOI logo
Sánchez-Gijón, Pilar
2022. Neural machine translation and the indivisibility of culture and language. FORUM. Revue internationale d’interprétation et de traduction / International Journal of Interpretation and Translation 20:2  pp. 357 ff. DOI logo
Tonja, Atnafu Lambebo, Olga Kolesnikova, Muhammad Arif, Alexander Gelbukh & Grigori Sidorov
2022. Improving Neural Machine Translation for Low Resource Languages Using Mixed Training: The Case of Ethiopian Languages. In Advances in Computational Intelligence [Lecture Notes in Computer Science, 13613],  pp. 30 ff. DOI logo
Tonja, Atnafu Lambebo, Olga Kolesnikova, Alexander Gelbukh & Grigori Sidorov
2023. Low-Resource Neural Machine Translation Improvement Using Source-Side Monolingual Data. Applied Sciences 13:2  pp. 1201 ff. DOI logo
Wiesmann, Eva
2019. Machine Translation in the Field of Law: A Study of the Translation of Italian Legal Texts into German. Comparative Legilinguistics 37:1  pp. 117 ff. DOI logo
Yigezu, Mesay Gemeda, Michael Melese Woldeyohannis & Atnafu Lambebo Tonja
2021. 2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA),  pp. 89 ff. DOI logo
Zhao, Xiaoda, Xiaoyan Jin & Naeem Jan
2022. A Comparative Study of Text Genres in English-Chinese Translation Effects Based on Deep Learning LSTM. Computational and Mathematical Methods in Medicine 2022  pp. 1 ff. DOI logo
2021. Sustainability of translation as a profession: Changing roles of translators in light of the developments in machine translation systems. RumeliDE Dil ve Edebiyat Araştırmaları Dergisi :Ö9  pp. 575 ff. DOI logo
[no author supplied]
2019. References. In Machine Translation and Global Research: Towards Improved Machine Translation Literacy in the Scholarly Community,  pp. 97 ff. DOI logo

This list is based on CrossRef data as of 16 may 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.