Article published in:
Translation Spaces
Vol. 6:2 (2017) ► pp. 291309

Full-text

Making sense of neural machine translation
References

[ p. 307 ]References

Arthur, Philip, Graham Neubig, and Satoshi Nakamura
2016 “Incorporating Discrete Translation Lexicons into Neural Machine Translation.” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (Austin, Texas, November 1–5, 2016). 1557–1567. CrossrefGoogle Scholar
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio
2014 “Neural Machine Translation by Jointly Learning to Align and Translate”, eprint arXiv:1409.0473 (https://​arXiv​.org​/abs​/1409​.0473). Google Scholar
Bentivogli, Luisa, Arianna Bisazza, Mauro Cettolo, and Marcello Federico
2016 “Neural versus Phrase-Based Machine Translation Quality: A Case Study.” in Proceedings of Conference on Empirical Methods in Natural Language Processing. EMNLP: Texas (USA). 257–267. (eprint arXiv:1608.04631 http://​arxiv​.org​/abs​/1608​.04631). Crossref
Bojar, Ondrej, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri
2016 “Findings of the 2016 Conference on Machine Translation.” in Proceedings of the First Conference on Machine Translation (Berlin, Germany, August). 131–198.Google Scholar
Castilho, Sheila, Joss Moorkens, Federico Gaspari, Iacer Calixto, John Tinsley, and Andy Way
2017 “Is Neural Machine Translation the New State of the Art?Prague Bulletin of Mathematical Linguistics 108(1): 109–120. CrossrefGoogle Scholar
Cho, Kyunghyun, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio
2014 “On the Properties of Neural Machine Translation: Encoder-Decoder Approaches.” eprint arXiv:1409.1259 (https://​arxiv​.org​/abs​/1409​.1259).
Forcada, Mikel L., and Ramón P. Ñeco
1997 “Recursive hetero-associative memories for translation” in Biological and Artificial Computation: From Neuroscience to Technology (International Work-Conference on Artificial and Natural Neural Networks, IWANN’97 Lanzarote, Canary Islands, Spain, June 4–6, 1997, Proceedings), edited by José Mira, Roberto Moreno-Díaz, and Joan Cabestany. Heidelberg: Springer. 453–462.Google Scholar
Forcada, Mikel L.
2010 “Machine Translation Today”, in Handbook of Translation Studies, edited by Yves Gambier, Luc Van Doorslaer. vol. 1, 215–223. CrossrefGoogle Scholar
Foster, George, Pierre Isabelle, and Pierre Plamondon
1997 “Target-Text Mediated Interactive Machine Translation.” Machine Translation 12(1). 175–194. CrossrefGoogle Scholar
Gehring, Jonas, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin
2017 “Convolutional Sequence to Sequence Learning.” eprint arXiv:1705.03122 (eprint arXiv: 1705.03122 https://​arxiv​.org​/abs​/1705​.03122).
Haddow, Barry
2017Personal communication.Google Scholar
Hearne, Mary, and Andy Way
2011 “Statistical Machine Translation: A Guide for Linguists and Translators.” Language and Linguistics Compass 5(5). 205–226. CrossrefGoogle Scholar
Hochreiter, Sepp, and Jürgen Schmidhuber
1997 “Long short-term memory.” Neural Computation 9(8).1735–1780. CrossrefGoogle Scholar
Koehn, Philipp
2010Statistical Machine Translation. Cambridge, Mass., USA: MIT Press.Google Scholar
[ p. 308 ]
Levin, Pavel, Nishikant Dhanuka, and Maxim Khalilov
2017 “Machine Translation at Booking.com: Journey and Lessons Learned.” in The 20th Annual Conference of the European Association for Machine Translation (29–31 May 2017, Prague, Czech Republic): Conference Booklet, User Studies and Project/Product Descriptions. 81–86.Google Scholar
Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean
2013a “Efficient Estimation of Word Representations in Vector Space.” in Proceedings of the International Conference on Learning Representations (also available as eprint arXiv: 1301.3781 https://​arxiv​.org​/pdf​/1301​.3781​.pdf).
Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig
2013b “Linguistic Regularities in Continuous Space Word Representations.” in Proceedings of NAACL-HLT 2013 (Atlanta, Georgia, 9–14 June 2013), 746–751.Google Scholar
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu
2002 “BLEU: A Method for Automatic Evaluation of Machine Translation.” Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 311–318.Google Scholar
Peris, Álvaro, Miguel Domingo, and Francisco Casacuberta
2017 “Interactive Neural Machine Translation.” Computer Speech and Language 45, 201–220. CrossrefGoogle Scholar
Sennrich, Rico, Barry Haddow, and Alexandra Birch
2016Neural Machine Translation of Rare Words with Subword Units.” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 1715–1725 (Also eprint arXiv: 1508.07909: https://​arxiv​.org​/abs​/1508​.07909).
Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio Miceli Barone, Jozef Mokry, and Maria Nădejde
2017 “Nematus: A Toolkit for Neural Machine Translation” eprint arXiv:1703.04357 (https://​arxiv​.org​/abs​/1703​.04357).
Shterionov, Dimitar, Pat Nagle, Laura Casanellas, Riccardo Superbo, and Tony O’Dowd
2017 “Empirical Evaluation of NMT and PBSMT Quality for Large-Scale Translation Production” in The 20th Annual Conference of the European Association for Machine Translation (29–31 May 2017, Prague, Czech Republic): Conference Booklet, User Studies and Project/Product Descriptions. 75–80.Google Scholar
Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le
2014 “Sequence to Sequence Learning with Neural Networks”, in Advances in Neural Information Processing Systems, edited by Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger. p. 3104–3112.Google Scholar
Toral, Antonio, and Víctor M. Sánchez-Cartagena
2017 “A Multifaceted Evaluation of Neural versus Phrase-Based Machine Translation for 9 Language Directions” in Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (Valencia, Spain, April 3–7, 2017), Volume 1, Long Papers. 1063–1073.Google Scholar
Vashee, Kirti
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin
2017 “Attention is all you need.” eprint arXiv:1706.03762 (https://​arxiv​.org​/abs​/1706​.03762).
Way, Andy, and Mary Hearne
2011 “On the Role of Translations in State-of-the-Art Statistical Machine Translation.” Language and Linguistics Compass 5:5, 227–248. CrossrefGoogle Scholar
Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean
2017Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation”, eprint arXiv:1609.08144 (https://​arxiv​.org​/abs​/1609​.08144).[ p. 309 ]
Cited by

Cited by 11 other publications

No author info given
2019.  In Machine Translation and Global Research: Towards Improved Machine Translation Literacy in the Scholarly Community,  pp. 97 ff. Crossref logo
Bowker, Lynne
2020. Chinese speakers’ use of machine translation as an aid for scholarly writing in English: a review of the literature and a report on a pilot workshop on machine translation literacy. Asia Pacific Translation and Intercultural Studies  pp. 1 ff. Crossref logo
Bowker, Lynne
2020. Machine translation literacy instruction for international business students and business English instructors. Journal of Business & Finance Librarianship 25:1-2  pp. 25 ff. Crossref logo
Cid, Clara Ginovart, Carme Colominas & Antoni Oliver
2020. Language industry views on the profile of the post-editor. Translation Spaces Crossref logo
de Faria Pires, Loïc
2020. Master’s students’ post-editing perception and strategies. FORUM. Revue internationale d’interprétation et de traduction / International Journal of Interpretation and Translation 18:1  pp. 26 ff. Crossref logo
Karimova, Sariya, Patrick Simianer & Stefan Riezler
2018. A user-study on online adaptation of neural machine translation to human post-edits. Machine Translation 32:4  pp. 309 ff. Crossref logo
Melby, Alan K. & Daryl R. Hague
2019.  In The Evolving Curriculum in Interpreter and Translator Education [American Translators Association Scholarly Monograph Series, XIX],  pp. 205 ff. Crossref logo
Moorkens, Joss
2018. What to expect from Neural Machine Translation: a practical in-class translation evaluation exercise. The Interpreter and Translator Trainer 12:4  pp. 375 ff. Crossref logo
Moorkens, Joss, Antonio Toral, Sheila Castilho & Andy Way
2018. Translators’ perceptions of literary post-editing using statistical and neural machine translation. Translation Spaces 7:2  pp. 240 ff. Crossref logo
O’Brien, Sharon
2020.  In The Routledge Handbook of Translation and Cognition,  pp. 376 ff. Crossref logo
O’Brien, Sharon & Maureen Ehrensberger-Dow
2020. MT Literacy—A cognitive view. Translation, Cognition & Behavior 3:2  pp. 145 ff. Crossref logo

This list is based on CrossRef data as of 22 november 2020. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.