Negation and Speculation Detection

| University of Huelva
| University of Huelva
HardboundAvailable
ISBN 9789027202178 | EUR 95.00 | USD 143.00
 
PaperbackAvailable
ISBN 9789027202161 | EUR 33.00 | USD 49.95
 
e-Book
ISBN 9789027262950 | EUR 95.00/33.00*
| USD 143.00/49.95*
 
Negation and speculation detection is an emerging topic that has attracted the attention of many researchers, and there is clearly a lack of relevant textbooks and survey texts. This book aims to define negation and speculation from a natural language processing perspective, to explain the need for processing these phenomena, to summarise existing research on processing negation and speculation, to provide a list of resources and tools, and to speculate about future developments in this research area. An advantage of this book is that it will not only provide an overview of the state of the art in negation and speculation detection, but will also introduce newly developed data sets and scripts. It will be useful for students of natural language processing subjects who are interested in understanding this task in more depth and for researchers with an interest in these phenomena in order to improve performance in other natural language processing tasks.
[Natural Language Processing, 13]  2019.  ix, 95 pp.
Publishing status: Available
Table of Contents
Chapter 1. Introduction
1–6
Acknowledgements
List of Abbreviations
Chapter 2. Negation
7–26
Chapter 3. Speculation
27–41
Chapter 4. Applications
43–51
Chapter 5. Resources
53–62
Chapter 6. Future trends and discussion
63–65
Glossary
67–76
References
77–93
Index
“Overall, the book is structured in a logical and clear manner and is written in precise and concise academic language. The fact that the volume under review is not ‘bulky’ (i.e. only ninety-five pages in length) does not detract from its value. Readers would feel like sitting vis-a`-vis with the authors while reading the book, and therefore it could be used as either a classroom text or a supplement reading. Nevertheless, the book may require readers to have basic statistics knowledge and data analytic techniques. Particularly, it may appeal to those who specialize in quantitative linguistics, computational linguistics, NLP, corpus linguistics, corpus-based translation studies, and so forth. Those who attempt to employ quantitative approaches to investigate negative and speculative language in other domains would also find this book useful. For these reasons, Cruz Díaz and Maña López’s present work is a great contribution to the field of quantitative studies and is well worth recommending.”
References

References

Abu-Jbara, A., & Radev, D.
(2012) Umichigan: A conditional random field model for resolving the scope of negation. Proceedings of the First Joint Conference on Lexical and Computational Semantics, Vol. 1: Proceedings of the Main Conference and the Shared Task, and Vol. 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (pp. 328–334).
Adel, H., & Schütze, H.
(2016) Exploring different dimensions of attention for uncertainty detection. arXiv Preprint arXiv:1612.06549.
Afzal, Z., Pons, E., Kang, N., Sturkenboom, M. C., Schuemie, M. J., & Kors, J. A.
(2014) ContextD: An algorithm to identify contextual properties of medical terms in a dutch clinical corpus. BMC Bioinformatics, 15(1), 373. Crossref link
Agarwal, S., & Yu, H.
(2010) Biomedical negation scope detection with conditional random fields. Journal of the American Medical Informatics Association: JAMIA, 17(6), 696–701. Crossref link; Crossref link
AL-Khawaldeh, F. T.
(2015) A study of the effect of resolving negation and sentiment analysis in recognizing text entailment for arabic. World of Computer Science and Information Technology Journal (WCSIT), 5(7), 124–128.
Al-Sabbagh, R., Girju, R., & Diesner, J.
(2015) A unified framework to identify and extract uncertainty cues, holders, and scopes in one fell-swoop. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing. CICLing 2015, Cairo, Egypt, April 20–24 (Lecture Notes in Computer Science, Vol. 9041) (pp.310–334). Cham, Switzerland: Springer.
Androutsopoulos, I., & Malakasiotis, P.
(2009) A survey of paraphrasing and textual entailment methods. arXiv Preprint arXiv:0912.3747. Published in Journal of Artificial Intelligence , 38(1), 135–187 2010.
Apostolova, E., Tomuro, N., & Demner-Fushman, D.
(2011) Automatic extraction of lexico-syntactic patterns for detection of negation and speculation scopes. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers, Vol. 2, (pp.283–287).
Aramaki, E., Morita, M., Kano, Y., & Ohkuma, T.
(2016) Overview of the NTCIR-12 MedNLPDoc task. Proceedings of NTCIR-12, 71–75.
Asmi, A., & Ishaya, T.
(2012) Negation identification and calculation in sentiment analysis. The Second International Conference on Advances in Information Mining and Management, Venice, Italy, 25–29 June (pp.1–7).
Attardi, G., Cozza, V., & Sartiano, D.
(2015) Detecting the scope of negations in clinical notes. In C. Bosco, S. Tonelli & F. M. Zanotto (Eds.), Proceedings of the Second Italian Conference on Computational Linguistics (CLIC-it 2015), Trento, 3–4 December, 2015 (pp.14–19). Torino: Academia University Press. Crossref link
Averbuch, M., Karson, T., Ben-Ami, B., Maimon, O., & Rokach, L.
(2004) Context-sensitive medical information retrieval. In M. Fieschi et al. (Eds.), Proceedings of the 11th World Congress on Medical Informatics (MEDINFO-2004) (pp.1–8). Amsterdam: IOS Press.
Baker, K., Bloodgood, M., Dorr, B. J., Filardo, N. W., Levin, L. S., & Piatko, C. D.
(2010) A modality lexicon and its use in automatic tagging. Proceedings of the Seventh Conference on International Language Resources and Evaluation (LREC’10) (pp.1402–1407).
Baker, K., Bloodgood, M., Dorr, B. J., Callison-Burch, C., Filardo, N. W., Piatko, C., Leven, L. & Miller, S.
(2012) Modality and negation in simt use of modality and negation in semantically-informed syntactic MT. Computational Linguistics, 38(2), 411–438. Crossref link
Ballesteros, M., Francisco, V., Díaz, A., Herrera, J., & Gervás, P.
(2012) Inferring the scope of negation in biomedical documents. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013, Karlovasi, Samos, Greece, March 24–30, 2013, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 7181) (pp.363–375). Heidelberg: Springer.
Banjade, R., & Rus
(2016) DT-neg: Tutorial dialogues annotated for negation scope and focus in context. LREC 2016 Portorož Proceedings.
Beltagy, I., Roller, S., Cheng, P., Erk, K., & Mooney, R. J.
(2017) Representing meaning with a combination of logical and distributional models. Computational Linguistics, 42(4), 763–808. Crossref link
Benamara, F., Chardon, B., Mathieu, Y. Y., Popescu, V., & Asher, N.
(2012) How do negation and modality impact opinions? Proceedings of the Workshop on Extra-Propositional Aspects of Meaning in Computational Linguistics, Jeju, Republic of Korea, 13 July (pp.10–18). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Blanco, E., & Moldovan, D.
(2011a) Semantic representation of negation using focus detection. ACL-HILT 2011. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, 19–24 June, 2011, Vol. 1: Long Papers (pp.581–589). Stroudsburg, PA: Assocation for Computational Lingusitics (ACL).
Blanco, E., & Moldovan, D. I.
(2011b) Some issues on detecting negation from text. In R. C. Murray & P. M. McCarthy (Eds.), Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference (FLAIRS). Palo Alto CA: Association for the Advancement of Artificial Intelligence.
Bokharaeian, B., Díaz Esteban, A., & Ballesteros Martínez, M.
(2013) Extracting drug-drug interaction from text using negation features. Procesamieto de Lenguage Natural, 51, 49–56.
Bokharaeian, B., Diaz, A., & Chitsaz, H.
(2016) Enhancing extraction of drug-drug interaction from literature using neutral candidates, negation, and clause dependency. PloS One, 11(10), e0163480. Crossref link
Bokharaeian, B., Diaz, A., Neves, M., & Francisco, V.
(2014) Exploring negation annotations in the DrugDDI corpus. Fourth Workshop on Building and Evaluating Resources for Health and Biomedical Text Processing (BIOTxtM 2014).
Buchholz, S., & Marsi, E.
(2006) CoNLL-X shared task on multilingual dependency parsing. CoNLL-X ’06. Proceedings of the Tenth Conference on Computational Natural Language Learning, New York City, NY, 8–9 June (pp.149–164). Stroudsburg, PA: Association for Computational Linguistics (ACL). Crossref link
Cairns, B. L., Nielsen, R. D., Masanz, J. J., Martin, J. H., Palmer, M. S., Ward, W. H., & Savova, G. K.
(2011) The MiPACQ clinical question answering system. AMIA Annual Symposium Proceedings (pp.171–180).
Carrillo-de-Albornoz, J., & Plaza, L.
(2013) An emotion-based model of negation, intensifiers, and modality for polarity and intensity classification. Journal of the Association for Information Science and Technology, 64(8), 1618–1633.
ChandraKala, S., & Sindhu, C.
(2012) Opinion mining and sentiment classification: A survey. ICTACT Journal on Soft Computing 3(1), 421–427.
Chang, C., & Lin, C.
(2011) LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
Chapman, B. E., Lee, S., Kang, H. P., & Chapman, W. W.
(2011) Document-level classification of CT pulmonary angiography reports based on an extension of the ConText algorithm. Journal of Biomedical Informatics, 44(5), 728–737. Crossref link
Chapman, W. W., Bridewell, W., Hanbury, P., Cooper, G. F., & Buchanan, B. G.
(2001a) Evaluation of negation phrases in narrative clinical reports. Proceedings of the American Medical Informatics Association Symposium (pp.105–109).
Chapman, W. W., Hilert, D., Velupillai, S., Kvist, M., Skeppstedt, M., Chapman, B. E., Conway, M. Tharp, M., Mowery, D. L., & Deleger, L.
(2013) Extending the NegEx lexicon for multiple languages. In C. U. Lehmann, E. Ammenwerth & C. Nøhr (Eds.), MEDINFO 2013. Proceedings of the 14th World Congress on Medical and Health Informatics (Studies in Health Technology and Informatics 192) (pp.677–681). Amsterdam: IOS Press.
Chapman, W. W., Bridewell, W., Hanbury, P., Cooper, G. F., & Buchanan, B. G.
(2001b) A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics, 34, 301–310. Crossref link
Chen, Z., Zou, B., Zhu, Q., & Li, P.
(2013) Chinese negation and speculation detection with conditional random fields. In G. Zhou, J. Li, D. Zhao, & Y. Feng (Eds.), Natural Language Processing and Chinese Computing. Second CCF Conference, NLPCC 2013, Chongqing, China, November 15–19, 2013. Proceedings (Communications in Computer and Information Science, Vol. 400) (pp.30–40). Heidelberg: Springer.
Chowdhury, M. F. M., & Lavelli, A.
(2013) Exploiting the scope of negations and heterogeneous features for relation extraction: A case study for drug-drug interaction extraction. Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, 09–15 June (pp.765–771).
Chowdhury, M., & Mahbub, F.
(2012) FBK: Exploiting phrasal and contextual clues for negation scope detection. Proceedings of the First Joint Conference on Lexical and Computational Semantics, Vol. 1: Proceedings of the Main Conference and the Shared Task, and Vol. 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (pp.340–346).
Collins, M., Koehn, P., & Kučerová, I.
(2005) Clause restructuring for statistical machine translation. Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, University of Michigan, 25–30 June (pp.531–540). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Costumero, R., Lopez, F., Gonzalo-Martín, C., Millan, M., & Menasalvas, E.
(2014) An approach to detect negation on medical documents in Spanish. In D. Ślęzak, A. H. Tan, J. F. Peters, & L. Schwabe (Eds.), Brain Informatics and Health (BIH 2014) (Lecture Notes in Computer Science, Vol. 8609) (pp.366–375). Cham, Switzerland: Springer.
Cotik, V., Roller, R., Xu, F., Uszkoreit, H., Budde, K., & Schmidt, O. D.
(2016) Negation detection in clinical reports written in German. Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016), Osaka, Japan, December 12th 2016, 115–124.
Cotik, V., Stricker, V., Vivaldi, J., & Rodriguez, H.
(2016) Syntactic methods for negation detection in radiology reports in spanish. BioNLP 2016, Proceedings of the 15th Workshop on Biomedical Natural Language Processing (pp.156–165). Stroudsburg, PA: Association for Computational Linguistics (ACL). Crossref link
Councill, I. G., McDonald, R., & Velikovich, L.
(2010) What’s great and what’s not: Learning to classify the scope of negation for improved sentiment analysis. In Proceedings of the Workshop on Negation and Speculation in National Language Processing, NeSp-NLP (pp.51–59). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Cruz Díaz, N. P., Maña López, M. J., Vázquez, J. M., & Álvarez, V. P.
(2012) A machine-learning approach to negation and speculation detection in clinical texts. Journal of the American Society for Information Science and Technology, 63(7), 1398–1410. Crossref link
Cruz, N. P., Taboada, M., & Mitkov, R.
(2015) A machine-learning approach to negation and speculation detection for sentiment analysis. Journal of the Association for Information Science and Technology, 67(9), 526–558.
Dadvar, M., Hauff, C., & de Jong, F.
(2011) Scope of negation detection in sentiment analysis. In DIR 2011. Proceedings of the Dutch-Belgian Information Retrieval Workshop, University of Amsterdam (pp.16–20).
Daelemans, W., Van Den Bosch, A., & Weijters, T.
(1997) IGTree: Using trees for compression and classification in lazy learning algorithms. Artificial Intelligence Review, 11(1–5), 407–423. Crossref link
Dagan, I., Glickman, O., & Magnini, B.
(2006) The PASCAL recognising textual entailment challenge. In J. Quiñonero-Candela, I. Dagan, B. Magnini & F. d’Alché-Buc (Eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment. First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11–13, 2005, Revised Selected Papers (Lecture Notes in Artificial Intelligence 3944) (pp.177–190). Heidelberg: Springer.
Dalianis, H., Hassel, M., Henriksson, A., & Skeppstedt, M.
(2012) Stockholm EPR Corpus: A Clinical Database Used to Improve Health Care. Stockholm: DSV, Stockholm University.
de Albornoz, J. C., Plaza, L., Díaz, A., & Ballesteros, M.
(2012) Ucm-i: A rule-based syntactic approach for resolving the scope of negation. Proceedings of the First Joint Conference on Lexical and Computational Semantics, Vol. 1: Proceedings of the Main Conference and the Shared Task, and Vol. 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (pp.282–287).
De Haan, F.
(1997) The Interaction of Modality and Negation: A Typological Study. London: Routledge.
de Marneffe, M., MacCartney, B., Grenager, T., Cer, D., Rafferty, A., & Manning, C. D.
(2006) Learning to distinguish valid textual entailments. In Proceedings of the Second Pascal Recognising Textual Entailment Challenge Workshop (RTE-2) , Venice, Italy.
De Marneffe, M., MacCartney, B., & Manning, C. D.
(2006) Generating typed dependency parses from phrase structure parses. Proceedings of LREC, 6 (pp.449–454).
Deléger, L., & Grouin, C.
(2012) Detecting negation of medical problems in french clinical notes. Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, Miami, FL, 28–30 January (pp.697–702). Crossref link
Denny, J. C., Miller, R. A., Waitman, L. R., Arrieta, M. A., & Peterson, J. F.
(2009) Identifying QT prolongation from ECG impressions using a general-purpose natural language processor. International Journal of Medical Informatics, 78, S34–S42. Crossref link
Denny, J. C., Choma, N. N., Peterson, J. F., Miller, R. A., Bastarache, L., Li, M., & Peterson, N. B.
(2012) Natural language processing improves identification of colorectal cancer testing in the electronic medical record. Medical Decision Making: An International Journal of the Society for Medical Decision Making, 32(1), 188–197. Crossref link; Crossref link
Di Marco, C., Kroon, F. W., & Mercer, R. E.
(2006) Using hedges to classify citations in scientific articles. In J. G. Shanahan, Y. Qu, & J. Wiebe (Eds.), Computing Attitude and Affect in Text: Theory and Applications (The Information Retrieval Series 20) (pp.247–263). Dordrecht, Netherlands: Springer. Crossref link
Diamantini, C., Mircoli, A., & Potena, D.
(2016) A negation handling technique for sentiment analysis. International Conference on Collaboration Technologies and Systems (CTS), Orlando, FL, 31 October – 4 November (pp.188–195).
Dowty, D.
(1994) The role of negative polarity and concord marking in natural language reasoning. In M. Harvey & L. Santelmann (Eds.), Proceedings of SALT, 4. Proceedings of the 4th Semantics and Linguistic Theory Conference, held May 6–8, 1994, at the University of Rochester (pp.114–144).
Elazhary, H.
(2017) NegMiner: An automated tool for mining negations from electronic narrative medical documents. I.J. Intelligent Systems and Applications, 4, 14–22. Crossref link
Elkin, P. L., Brown, S. H., Bauer, B. A., Husser, C. S., Carruth, W., Bergstrom, L. R., & Wahner-Roedler, D. L.
(2005) A controlled trial of automated classification of negation from clinical notes. BMC Medical Informatics and Decision Making, 5(1), 13. Crossref link
Enger, M., Velldal, E., & Øvrelid, L.
(2017) An open-source tool for negation detection: A maximum-margin approach. Proceedings of the Workshop Computational Semantics Beyond Events and Roles (SemBEaR 2017), Valencia, Spain, 3–4 April (pp.64–69). Stroudsburg, PA: Association for Computational Linguistics (ACL). Crossref link
Fancellu, F., Lopez, A., & Webber, B. L.
(2016) Neural networks for negation scope detection. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August, Vol. 1 (pp.495–504). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Fancellu, F., & Webber, B.
(2015) Translating negation: A manual error analysis. Second Workshop on Extra-Propositional Aspects of Meaning in Computational Semantics (ExProM 2015), Denver, CO, 5 June, 1–10. Stroudsburg, PA: Association for Computational Linguistics (ACL).
Fancellu, F., & Webber, B. L.
(2014) Applying the semantics of negation to SMT through n-best list re-ranking. Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2014, April 26–30, 2014, Gothenburg, Sweden (pp.598–606). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Farkas, R., & Szarvas, G.
(2008) Automatic construction of rule-based ICD-9-CM coding systems. BMC Bioinformatics, 9(3), S10. Crossref link
Farkas, R., Vincze, V., Móra, G., Csirik, J., & Szarvas, G.
(2010) The CoNLL-2010 shared task: Learning to detect hedges and their scope in natural language text. Proceedings of the Fourteenth Conference on Computational Natural Language Learning – Shared Task, Uppsala, Sweden, 15–16 July (pp.1–12).
Farooq, U., Mansoor, H., Nongaillard, A., Ouzrout, Y., & Qadir, M. A.
(2017) Negation handling in sentiment analysis at sentence level. JCP, 12(5), 470–478.
Fiszman, M., Rindflesch, T. C., & Kilicoglu, H.
(2006) Summarizing drug information in medline citations. AMIA Annual Symposium Proceedings 2006 (pp.254–258).
Friedman, C., Alderson, P. O., Austin, J. H., Cimino, J. J., & Johnson, S. B.
(1994) A general natural-language text processor for clinical radiology. Journal of the American Medical Informatics Association: JAMIA, 1(2), 161–174. Crossref link
Fujikawa, K., Seki, K., & Uehara, K.
(2013) NegFinder: A web service for identifying negation signals and their scopes. Information and Media Technologies, 8(3), 884–889.
Ganter, V., & Strube, M.
(2009) Finding hedges by chasing weasels: Hedge detection using wikipedia tags and shallow linguistic features. Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, Suntec, Singapore, 4 August (pp.173–176). Crossref link
Gaona, M. A. R., Gelbukh, A. F., & Bandyopadhyay, S.
(2010) Recognizing textual entailment with statistical methods. MCPR 2010. Second Mexican Conference on Pattern Recognition, Puebla, Mexico, 27–29 September (pp.372–381).
Georgescul, M.
(2010) A hedgehop over a max-margin framework using hedge cues. Proceedings of the Fourteenth Conference on Computational Natural Language Learning – Shared Task, Uppsala, Sweden, 15–16 July (pp.26–31).
Gindl, S., Kaiser, K., & Miksch, S.
(2008) Syntactical negation detection in clinical practice guidelines. 187–192. In S. Andersen, G. Klein, S. Schulz, J. Aarts & M. Mazzoleni (Eds.), eHealth Beyond the Horizon – Get IT There (Studies in Health Technology and Informatics, 136) (pp.187). Amsterdam: IOS Press.
Goldin, I., & Chapman, W. W.
(2003) Learning to detect negation with ‘not’in medical texts. Proceedings of the SIGIR ’03 Workshop on Text Analysis and Search for Bioinformatics, Toronto, Canada, 28 July – 1 August.
Goryachev, S., Sordo, M., Zeng, Q. T., & Ngo, L.
(2006) Implementation and Evaluation of Four Different Methods of Negation Detection. Boston, MA: DSG.
Grabar, N., & Hamon, T.
(2009) Exploitation of speculation markers to identify the structure of biomedical scientific writing. AMIA Annual Symposium Proceedings 2009 (pp.203–207).
Gros, O., & Stede, M.
(2013) Determining negation scope in german and english medical diagnoses. In M. Taboada & R. Trnavac (Eds.), Nonveridicality and Evaluation. Theoretical, Computational and Corpus Approaches (pp.113–126). Leiden: Brill.
Gyawali, B., & Solorio, T.
(2012) UABCoRAL: A preliminary study for resolving the scope of negation. Proceedings of the First Joint Conference on Lexical and Computational Semantics, Vol. 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (pp.275–281).
Harabagiu, S., Hickl, A., & Lacatusu, F.
(2006) Negation, contrast and contradiction in text processing. Proceedings of the National Conference on Artificial Intelligence (AAAI 6),Boston, MA (pp.755–762).
Harkema, H., Dowling, J. N., Thornblade, T., & Chapman, W. W.
(2009) ConText: An algorithm for determining negation, experiencer, and temporal status from clinical reports. Journal of Biomedical Informatics, 42(5), 839–851. Crossref link
He, B., Dong, B., Guan, Y., Yang, J., Jiang, Z., Yu, Q., … Qu, C.
(2017) Building a comprehensive syntactic and semantic corpus of Chinese clinical texts. Journal of Biomedical Informatics, 69, 203–217. Crossref link
He, H., Fancellu, F., & Webber, B.
(2017) Neural networks for negation cue detection in Chinese. Proceedings of the Workshop Computational Semantics Beyond Events and Roles (SemBEaR 2017), Valencia, Spain, 3–4 April (pp.59–63). Stroudsburg, PA: Association for Computational Linguistics (ACL). Crossref link
Herrero-Zazo, M., Segura-Bedmar, I., Martínez, P., & Declerck, T.
(2013) The DDI corpus: An annotated corpus with pharmacological substances and drug–drug interactions. Journal of Biomedical Informatics, 46(5), 914–920. Crossref link
Hintikka, J.
(2002) Negation in logic and in natural language. Linguistics and Philosophy, 25(5–6), 585–600. Crossref link
Hirschberg, J., & Manning, C. D.
(2015) Advances in natural language processing. Science 349(6245), 261–266. Crossref link
Hogenboom, A., van Iterson, P., Heerschop, B., Frasincar, F., & Kaymak, U.
(2011) Determining negation scope and strength in sentiment analysis. IEEE International Conference on Systems, Man, and Cybernetics (SMC), Anchorage, AK, 9–12 October (pp.2589–2594).
Horn, L. R., & Kato, Y.
(2000) Negation and Polarity: Syntactic and Semantic Perspectives: Syntactic and Semantic Perspectives Oxford: Oxford University Press.
Horn, L. R.
(1989) A Natural History of Negation. Chicago, IL: University of Chicago Press.
Hu, M., & Liu, B.
(2004) Mining and summarizing customer reviews. Proceedings of the 19th National Conference on Artifical Intelligence, July 25–29, 2004, San Jose, CA, 755–760.
Huang, Y., & Lowe, H. J.
(2007) A novel hybrid approach to automated negation detection in clinical radiology reports. Journal of the American Medical Informatics Association, 14(3), 304–311. Crossref link
Huddleston, R., & Pullum, G. K.
(2002) The Cambridge Grammar of the English Language (pp.1–23). Cambridge: Cambridge University Press. Crossref link
Hussein, Doaa Mohey El-Din Mohamed
(2016) A survey on sentiment analysis challenges. Journal of King Saud University – Engineering Sciences. Crossref link
Hyland, K.
(1995) The author in the text: Hedging scientific writing. Hong Kong Papers in Linguistics and Language Teaching, 18, 33–42.
(1996) Talking to the academy forms of hedging in science research articles. Written Communication, 13(2), 251–281. Crossref link
(1998) Hedging in Scientific Research Articles (Pragmatics & Beyond New Series 54). Amsterdam: John Benjamins. Crossref link
Jean, P., Harispe, S., Ranwez, S., Bellot, P., & Montmain, J.
(2016) Uncertainty detection in natural language: A probabilistic model. WIMS ’16. Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics, Nîmes, France, 13–15 June. New York, NY: ACM.
Ji, F., Qiu, X., & Huang, X.
(2010) Exploring uncertainty sentences in chinese. Proceedings of the 16th China Conference on Information Retrieval (pp.594–601).
Jia, L., Yu, C., & Meng, W.
(2009) The effect of negation on sentiment analysis and retrieval effectiveness. CIKM ’09. Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, 2–6 November (pp.1827–1830). New York, NY: ACM.
Jia, Z., Li, H., Ju, M., Zhang, Y., Huang, Z., Ge, C., & Duan, H.
(2014) A finite-state automata based negation detection algorithm for chinese clinical documents. PIC 2014. Proceedings of 2014 IEEE International Conference on Progress in Informatics and Computing, Shanghai, 16–18 May, (pp.128–132).
Jimenez, S., Duenas, G., Baquero, J., Gelbukh, A. F., Bátiz, A. J. D., & Mendizábal, A.
(2014) UNAL-NLP: Combining soft cardinality features for semantic textual similarity, relatedness and entailment. Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014) (pp.732–742). Crossref link
Jiménez-Zafra, S. M., Taulé, M., Martín-Valdivia, M. T., Ureña-López, L. A., & Martí, M. A.
(2017) SFU ReviewSP-NEG: A spanish corpus annotated with negation for sentiment analysis. A typology of negation patterns. Language Resources and Evaluation (pp.1–37).
Jurafsky, D., & Martin, J. H.
(2008) Speech and Language Processing. New York, NY: Pearson Education.
Kang, T., Zhang, S., Xu, N., Wen, D., Zhang, X., & Lei, J.
(2017) Detecting negation and scope in chinese clinical notes using character and word embedding. Computer Methods and Programs in Biomedicine, 140, 53–59. Crossref link
Kenji, A., & Tanaka-Ishii, K.
(2014) Sentence hedge detection without cue annotation: A heuristic cue selection approach. Information and Media Technologies, 9(2), 173–186.
Kennedy, A., & Inkpen, D.
(2006) Sentiment classification of movie and product reviews using contextual valence shifters. Computational Intelligence, 22(2), 110–125. Crossref link
Kilicoglu, H., & Bergler, S.
(2008) Recognizing speculative language in biomedical research articles: A linguistically motivated perspective. BMC Bioinformatics, 9(Suppl 11), S10. Crossref link
Kim, J., Ohta, T., Pyysalo, S., Kano, Y., & Tsujii, J.
(2009) Overview of BioNLP ’09 shared task on event extraction. BioNLP ’09. Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing – Shared Task, Boulder, CO, 5 June (pp.1–9). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Kim, J., Ohta, T., & Tsujii, J.
(2008) Corpus annotation for mining biomedical events from literature. BMC Bioinformatics, 9(1), 10. Crossref link
Kim, J. D., Ohta, T., Tateisi, Y., & Tsujii, J.
(2003) GENIA corpus-Semantically annotated corpus for bio-textmining. Bioinformatics 19(Suppl 1), i180–i182. Crossref link
Kiritchenko, S., & Mohammad, S.
(2016) The effect of negators, modals, and degree adverbs on sentiment composition. Proceedings of the Workshop on Computation Approaches to Subjectivity and Sentiment Analysis (Wassa), San Diego, CA, 12–17 June (pp.43–52). Stroudsburg, PA: Association for Computiational Linguistics (ACL).
Klima, E. S.
(1964) Negation in english. In J. A. Fodor & J. J. Katz (Eds.), The Structure of Language (pp.245–323). Englewood Cliffs, NJ: Prentice-Hall.
Kolchyna, O., Souza, T. T., Treleaven, P., & Aste, T.
(2015) Twitter sentiment analysis: Lexicon method, machine learning method and their combination. arXiv Preprint arXiv:1507.00955.
Konstantinova, N., & de Sousa, S. C.
(2011) Annotating negation and speculation: The case of the review domain. Proceedings of the Second Student Research Workshop associated with RANLP 2011, RANLP 2011 Organising Committee (pp.139–144). http://​aclweb​.org​/anthology​/R11​-2022
Konstantinova, N., de Sousa, S., Cruz, N., Maña, M. J., Taboada, M., & Mitkov, R.
(2012) A review corpus annotated for negation, speculation and their scope. LREC (pp.3190–3195).
Koopman, B., Bruza, P. D., Sitbon, L., & Lawley, M. J.
(2010) Analysis of the effect of negation on information retrieval of medical data. Proceedings of 15th Australasian Document Computing Symposium (ADCS). http://​koopman​.id​.au​/papers​/negation​_ir​.pdf
Koopman, B., & Zuccon, G.
(2014) Understanding negation and family history to improve clinical information retrieval. Proceedings of the 37th Annual International ACM SIGIR Conference on Research & Development in Information Retrieval (pp.971–974).
Kratzer, A.
(1981) The notional category of modality. In H-J. Elkmeyer & H. Rieser (Eds.), Words, Worlds, and Contexts (pp.38–74). Berlin: De Gruyter.
Kuhn, L., & Eickhoff, C.
(2016) Implicit negative feedback in clinical information retrieval. arXiv Preprint arXiv:1607.03296.
Lai, A., & Hockenmaier, J.
(2014) Illinois-LH: A denotational and distributional approach to semantics. Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, 23–23 August (pp.329–334). Crossref link
Laka, I.
(2013) Negation in syntax: On the nature of functional categories and projections. Anuario Del Seminario De Filología Vasca“ Julio De Urquijo”, 25(1), 65–136.
Lakoff, G.
(1972) Hedges: A study in meaning criteria and the logic of fuzzy concepts. Papers from the Eight Regional Meeting of the Chicago Linguistics Society (pp.183–228). Chicago, IL: CLS.
Lapponi, E., Read, J., & Ovrelid, L.
(2012) Representing and resolving negation for sentiment analysis. In J. Vreeken, C. Ling, M. J. Zaki, A. Siebes, J. X. Ju, B. Goethals, G. I. Webb, & X. Wu (Eds.), Data Mining Workshops (ICDMW) (pp.687–692). Washington DC: IEEE Computer Society.
Lapponi, E., Velldal, E., Øvrelid, L., & Read, J.
(2012) UiO 2: Sequence-labeling negation using dependency features. Proceedings of the First Joint Conference on Lexical and Computational Semantics – Vol. 1: Proceedings of the Main Conference and the Shared Task, and Vol. 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (pp.319–327).
Lawler, J.
(2010) Negation and negative polarity. In P. C. Hogan (Ed.), The Cambridge Encyclopedia of the Language Sciences (pp.554–555). Cambridge: Cambridge University Press.
Lazib L., Zhao Y., Qin B., Liu T.
(2016) Negation scope detection with recurrent neural networks models in review texts. In W. Che et al. (Eds.), Social Computing. ICYCSEE 2016 (Communications in Computer and Information Science, Vol. 623). Singapore: Springer.
Li, X., Gao, W., & Shavlik, J. W.
(2014) Detecting semantic uncertainty by learning hedge cues in sentences using an HMM. Proceedings of Workshop on Semantic Matching in Information Retrieval, Queensland, Australia, 11 July (pp.30–37).
Lien, E., & Kouylekov, M.
(2015) Semantic parsing for textual entailment. Proceedings of the 14th International Conference on Parsing Technologies, Bilbao, Spain, 22–24 July, 2014 (pp.40–72). Stroudsburg, PA: Association for Computational Linguistics (ACL). Crossref link.
Light, M., Qiu, X. Y., & Srinivasan, P.
(2004) The language of bioscience: Facts, speculations, and statements in between. Proceedings of BioLink 2004 Workshop on Linking Biological Literature, Ontologies and Databases: Tools for Users (pp.17–24).
Lindberg, D. A., Humphreys, B. L., & McCray, A. T.
(1993) The unified medical language system. Methods Inf. Med., 32, 281–291. Crossref link
Liu, B.
(2012) Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167. Crossref link
Macdonald, C., & Ounis, I.
(2006) The TREC Blogs06 collection: Creating and analysing a blog test collection. Department of Computer Science, University of Glasgow Tech Report TR-2006-224, 1, 3.1–4.1.
Markkanen, R., & Schröder, H.
(1989) Hedging as a translation problem in scientific texts. In C. Laurén & M. Nordman (Eds.), Special Languages: From Human Thinking to Thinking Machines (pp.171–175). Clevedon: Multilingual Matters.
Martınez-Cámara, E., Martın-Valdivia, M., Molina-González, M., & Urena-López, L.
(2013) Bilingual experiments on an opinion comparable corpus. Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Atlanta, GA, 14 June, (pp.87–93).
Medlock, B.
(2008) Exploring hedge identification in biomedical literature. Journal of Biomedical Informatics, 41(4), 636–654. Crossref link
Medlock, B., & Briscoe, T.
(2007) Weakly supervised learning for hedge classification in scientific literature. Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL’07)’, Association for Computational. Linguistics, Prague (pp.992–999). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Mehrabi, S., Krishnan, A., Sohn, S., Roch, A. M., Schmidt, H., Kesterson, J., … Liu, H.
(2015) DEEPEN: A negation detection system for clinical text incorporating dependency relation into NegEx. Journal of Biomedical Informatics, 54, 213–219. Crossref link
Meystre, S. M., Savova, G. K., Kipper-Schuler, K. C., & Hurdle, J. F.
(2008) Extracting information from textual documents in the electronic health record: A review of recent research. Yearb Med Inform, 35(128), 44
Miller, G. A.
(1995) WordNet: A lexical database for english. Communications of the ACM, 38(11), 39–41. Crossref link
Mitchell, K. J.
(2004) Implementation and evaluation of a negation tagger in a pipeline-based system for information extraction from pathology reports. Medical Informatics, 107, 663–667.
Mizuno, J., Kruengkrai, C., Ohtake, K., Hashimoto, C., Torisawa, K., Kloetzer, J., & Inui, K.
(2015) Recognizing complex negation on twitter. PACLIC 2015. 29th Pacific Asia Conference on Language, Information and Computation, Shanghai, 30 October – 1 November (pp.544–552).
Mohammad, S. M.
2016Sentiment analysis: Detecting valence, emotions, and other affectual states from text. In H. Meiselman (Ed.) Emotion Measurement (pp.201–238). Amsterdam: Elsevier. Crossref link
Moncecchi, G., Minel, J., & Wonsever, D.
(2014) The influence of syntactic information on hedge scope detection. In A. L. C. Bazzan & K. Pichara (Eds.), Advances in Artificial Intelligence – IBERAMIA 2014. 14th Ibero-American Conference on Artificial Intelligence, Santiago de Chile, Chile, 24–27 November (Lecture Notes in Computer Science, Vol. 8864) (pp.83–94). Heidelberg: Springer.
Morante, R., & Blanco, E.
(2012) * SEM 2012 shared task: Resolving the scope and focus of negation. Proceedings of the First Joint Conference on Lexical and Computational Semantics – Vol. 1: Proceedings of the Main Conference and the Shared Task, and Vol. 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (pp.265–274).
Morante, R., & Daelemans, W.
(2009a) Learning the scope of hedge cues in biomedical texts. BioNLP ’09. Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, Boulder, CO, 4–5 June, (pp.28–36). Stroudsburg, PA: Association for Computational Linguistics (ACL).
(2009b) A metalearning approach to processing the scope of negation. Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL) (pp.21–29). Stroudsburg, PA: Association for Computational Linguistics (ACL). Crossref link
(2012) ConanDoyle-neg: Annotation of negation in conan doyle stories. LREC 2012. Proceedings of the Eighth International Conference on Language Resources and Evaluation, Istanbul, Turkey, 21–27 May.
Morante, R., Liekens, A., & Daelemans, W.
(2008) Learning the scope of negation in biomedical texts. EMNLP ’08. Proceedings of the Conference on Empirical Methods in Natural Language Processing, Honolulu, HI, 25–27 October (pp.715–724). Stroudsburg, PA: Association for Computational Linguistics (ACL). Crossref link
Morante, R., & Sporleder, C.
(2012) Modality and negation: An introduction to the special issue. Computational Linguistics, 38(2), 223–260. Crossref link
Morante, R., Van Asch, V., & Daelemans, W.
(2010) Memory-based resolution of in-sentence scopes of hedge cues. CoNLL ’10. Shared Task Proceedings of the Fourteenth Conference on Computational Natural Language Learning – Shared Task, Uppsala, Sweden, 15–16 July (pp.40–47). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Moreno, A., López, S., Sánchez, F., & Grishman, R.
(2003) Developing a syntactic annotation scheme and tools for a spanish treebank. In A. Abeillé (Ed.), Treebanks. Building and Using Parsed Corpora (pp.149–163) Dordrecht: Kluwer.
Morita, M., Kano, Y., Ohkuma, T., Miyabe, M., & Aramaki, E.
(2013) Overview of the NTCIR-10 MedNLP task. Proceedings of NTCIR-10, Tokyo, Japan, 18–21 June.
Mowery, D. L., Velupillai, S., South, B. R., Christensen, L., Martinez, D., Kelly, L., … Savova, G.
(2014) Task 2: ShARe/CLEF eHealth evaluation lab 2014. CLEF 2014 Online Working Notes, 1180, 31–42.
Mutalik, P. G., Deshpande, A., & Nadkarni, P. M.
(2001) Use of general-purpose negation detection to augment concept indexing of medical documents a quantitative study using the umls. Journal of the American Medical Informatics Association, 8(6), 598–609. Crossref link
Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W.
(2011) Natural language processing: An introduction. Journal of the American Medical Informatics Association: JAMIA, 18(5), 544–551. Crossref link
Nawaz, R., Thompson, P., & Ananiadou, S.
(2010) Evaluating a meta-knowledge annotation scheme for bio-events. Proceedings of the Workshop on Negation and Speculation in Natural Language Processing (NeSp-NLP 2010) (pp.69–77).
Ohana, B., Tierney, B., & Delany, S. J.
(2016) Sentiment classification using negation as a proxy for negative sentiment. FLAIRS 2016. The 29th International FLAIRS Conference, Key Largo, FL, 16–18 May (pp.316–321).
Øvrelid, L., Velldal, E., & Oepen, S.
(2010) Syntactic scope resolution in uncertainty analysis. Proceedings of the 23rd International Conference on Computational Linguistics, COLING 2010 (pp.1379–1387).
Özgür, A., & Radev, D. R.
(2009) Detecting speculations and their scopes in scientific text. EMNLP ’11. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, Vol. 3, Singapore, 6–7 August (pp.1398–1407). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Packer, A. L.
(1999) SCIELO-an electronic publishing model for developing countries. In J. Smith, A. Ardö & P. Linde (Eds.), ELPUB. Washington, DC: ICCC Press.
(1998) SciELO: Uma metodologia para publicação eletrônica. Ciência Da Informação, 27(2), 109–121. Crossref link
Palmer, F. R.
(2001) Mood and Modality Cambridge: Cambridge University Press. Crossref link
Pang, B., & Lee, L.
(2004) A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. Proceedings of ACL 2004 (pp.271–278). Stroudsburg, PA: Association for Computational Linguistics (ACL).
(2008) Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. Crossref link
Payne, T. E.
(1997) Describing Morphosyntax: A Guide for Field Linguists. Cambridge: Cambridge University Press.
Piskorski, J., & Yangarber, R.
(2013) Information extraction: Past, present and future. In T. Poibeau et al. (Eds.), Multi-source, Multilingual Information Extraction and Summarization. Theory and Applications of Natural Language Processing (pp.23–49). Heidelberg: Springer. Crossref link
Prabhakaran, V., Rambow, O., & Diab, M.
(2010) Automatic committed belief tagging. Proceedings of the 23rd International Conference on Computational Linguistics (COLING): Posters (pp.1014–1022).
Pröllochs, N., Feuerriegel, S., & Neumann, D.
(2016) Negation scope detection in sentiment analysis: Decision support for news-driven trading. Decision Support Systems, 88, 67–75. Crossref link
(2017) Understanding negations in information processing: Learning from replicating human behavior. Arxiv.org.
Pyysalo, S., Ginter, F., Heimonen, J., Björne, J., Boberg, J., Järvinen, J., & Salakoski, T.
(2007) BioInfer: A corpus for information extraction in the biomedical domain. BMC Bioinformatics, 8(1), 50. Crossref link
Qian, Z., Li, P., Zhu, Q., Zhou, G., Luo, Z., & Luo, W.
(2016) Speculation and negation scope detection via convolutional neural networks. The 2016 Conference on Empirical Methods on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics (ACL).
Ragini, J. R., & Anand, P. R.
(2016) Sentiment analysis: A comprehensive overview and the state of art research challenges. Indian Journal of Science and Technology, 9(47).
Rea, S., Pathak, J., Savova, G., Oniki, T. A., Westberg, L., Beebe, C. E., … Huff, S. M.
(2012) Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: The SHARPn project. Journal of Biomedical Informatics, 45(4), 763–771. Crossref link
Read, J., Velldal, E., Oepen, S., & Øvrelid, L.
(2011) Resolving speculation and negation scope in biomedical articles with a syntactic constituent ranker. Proceedings of the Fourth International Symposium on Languages in Biology and Medicine, Singapore (LBM 2011).
Read, J., Velldal, E., Øvrelid, L., & Oepen, S.
(2012) UiO 1: Constituent-based discriminative ranking for negation resolution. Proceedings of the First Joint Conference on Lexical and Computational Semantics, Vol. 1: Proceedings of the Main Conference and the Shared Task, and Vol. 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (pp.310–318).
Rei, M., & Briscoe, T.
(2010) Combining manual rules and supervised learning for hedge cue and scope detection. Proceedings of the Fourteenth Conference on Computational Natural Language Learning – Shared Task (pp.56–63).
Reitan, J., Faret, J., Gambäck, B., & Bungum, L.
(2015) Negation scope detection for twitter sentiment analysis. 6th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (pp.99–108).
Rijsbergen, C. J. V.
(1979) Information retrieval (2nd ed.). Newton, MA: Butterworth-Heinemann.
Rios, M., Specia, L., Gelbukh, A., & Mitkov, R.
(2014) Statistical relational learning to recognise textual entailment. In A. Gelbukh (Ed.), International Conference on Intelligent Text Processing and Computational Linguistics, CICLing 2014 (Lecture Notes in Computer Science, Vol. 8403) (pp.330–339). Heidelberg: Springer.
Rushdi Saleh, M., Martín-Valdivia, M. T., Montejo-Ráez, A., & Ureña-López, L.
(2011) Experiments with SVM to classify opinions in different domains. Expert Systems with Applications, 38(12), 14799–14804. Crossref link
Sammons, M., Vydiswaran, V., & Roth, D.
(2010) Ask not what textual entailment can do for youProceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, 11–16 July (pp.1199–1208). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Saurí, R., & Pustejovsky, J.
(2009) FactBank: A corpus annotated with event factuality. Language Resources and Evaluation, 43(3), 227–268. Crossref link
Savova, G. K., Masanz, J. J., Ogren, P. V., Zheng, J., Sohn, S., Kipper-Schuler, K. C., & Chute, C. G.
(2010) Mayo clinical text analysis and knowledge extraction system (cTAKES): Architecture, component evaluation and applications. Journal of the American Medical Informatics Association: JAMIA, 17(5), 507–513. Crossref link
Segura Bedmar, I., Martínez, P., & Herrero Zazo, M.
(2013) Semeval-2013 task 9: Extraction of drug-drug interactions from biomedical texts (ddiextraction 2013). Second Joint Conference on Lexical and Computional Semantics (*SEM), Vol. 2 (pp.341–350).
Seifert, S., & Welte, W.
(1987) A Basic Bibliography on Negation in Natural Language. Tübingen: Gunter Narr.
Sharif, W., Samsudin, N. A., Deris, M. M., & Naseem, R.
(2016) Effect of negation in sentiment analysis. Innovative Computing Technology (INTECH), 2016 Sixth International Conference on (pp.718–723). Crossref link
Sharma, N., Sharma, R., & Biswas, K. K.
(2015) Recognizing textual entailment using dependency analysis and machine learning. HLT-NAACL 2015. The 2015 Conference of the North American Association for Computational Linguistics: Human Language Technologies. Proceedings of the Conference, Denver, CO, 31 May – 5 June (pp.147–153).
Shatkay, H., Pan, F., Rzhetsky, A., & Wilbur, W. J.
(2008) Multi-dimensional classification of biomedical text: Toward automated, practical provision of high-utility text to diverse users. Bioinformatics 24(18), 2086–2093. Crossref link; Crossref link
Shivade, C., de Marneffe, M., Fosler-Lussier, E., & Lai, A. M.
(2015) Extending NegEx with kernel methods for negation detection in clinical text. ExProM 2015. Extra-Propositinal Aspects of Meaning in Computational Linguistics, Denver, CO, 5 June.
Skeppstedt, M.
(2011) Negation detection in swedish clinical text: An adaption of NegEx to swedish. Journal of Biomedical Semantics, 2(3), S3. Crossref link
Skeppstedt, M., Paradis, C., & Kerren, A.
(2016) Marker words for negation and speculation in health records and consumer reviews. In M. Neves, F. Rinaldi, G. Nenadic, & D. Rebholz-Schumann (Eds.), SMBM 2016. Semantic Mining in Biomedicine. Proceedings of the 7th International Symposium on Semantic Mining in Biomedicine, Potsdam, Germany, 4–5 August, 2016 (pp.64–69).
Skeppstedt, M., Schamp-Bjerede, T., Sahlgren, M., Paradis, C., & Kerren, A.
(2015) Detecting speculations, contrasts and conditionals in consumer reviews. In A. Balahur, E. van der Groot, P. Vossen, & A. Montoyo (Eds.), 6th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis, WASSA 2015: Workshop proceedings (pp.162–168). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Snow, R., Vanderwende, L., & Menezes, A.
(2006) Effectively using syntax for recognizing false entailment. Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, New York, NY (pp.33–40). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Stricker, V., Iacobacci, I., & Cotik, V.
(2015) Negated findings detection in radiology reports in Spanish: An adaptation of NegEx to Spanish. IJCAI-Workshop on Replicability and Reproducibility in Natural Language Processing: Adaptative Methods, Resources and Software, Buenos Aires, Argentina, 25–27 July.
Styler IV, W. F., Bethard, S., Finan, S., Palmer, M., Pradhan, S., de Groen, P. C., … Savova, G.
(2014) Temporal annotation in the clinical domain. Transactions of the Association for Computational Linguistics, 2, 143–154.
Su, Q., Huang, C., & Chen, H. K.
(2010) Evidentiality for text trustworthiness detection. Proceedings of the 2010 Workshop on NLP and Linguistics: Finding the Common Ground (NLPLING 2010), Uppsala, Sweden, 16 July (pp.10–17). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Szarvas, G.
(2008) Hedge classification in biomedical texts with a weakly supervised selection of keywords. Proceedings of 46th Meeting of the Association for Computational Linguistics (pp.281–289). Stroudsburg, PA: Assocation for Computational Linguistics (ACL).
Szarvas, G., & Gurevych, I.
Uncertainty detection for natural language watermarking. Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP 2013), Nagoya, Japan, 14–18 October (pp.1188–1194).
Szarvas, G., Vincze, V., Farkas, R., & Csirik, J.
(2008) The BioScope Corpus: Biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinformatics, 9(11), S9.
Taboada, M.
(2016) Sentiment analysis: An overview from linguistics. Annual Review of Linguistics, 2, 325–347. Crossref link
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M.
(2011) Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267–307. Crossref link
Taboada, M., Gillies, M. A., & McFetridge, P.
(2006) Sentiment classification techniques for tracking literary reputation. LREC Workshop: Towards Computational Models of Literary Analysis, Genoa, Italy, 22 May (pp.36–43).
Tang, B., Wang, X., Wang, X., Yuan, B., & Fan, S.
(2010) A cascade method for detecting hedges and their scope in natural language text. Proceedings of the Fourteenth Conference on Computational Natural Language Learning – Shared Task, Uppsala, Sweden, 15–16 July (pp.13–17).
Thompson, P., Ananiadou, S., & Tsujii, J.
(2017) The GENIA corpus: Annotation levels and applications. In N. Ide & J. Pustejovsky (Eds.), Handbook of Linguistic Annotation (pp.1395–1432) Berlin: Springer. Crossref link
Tottie, G.
(1991) Negation in English Speech and Writing: A Study in Variation. New York, NY: Academic Press.
Uzuner, O., South, B. R., Shen, S., & DuVall, S. L.
(2011) 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. Journal of the American Medical Informatics Association: JAMIA, 18(5), 552–556. Crossref link
Valencia, V. M. S.
(1991) Studies on Natural Logic and Categorial Grammar. Valencia: VM Sanchez.
Van der Wouden, T.
(2002) Negative Contexts: Collocation, Polarity and Multiple Negation. London: Routledge. Crossref link
van Munster, E.
(1988) The treatment of scope and negation in rosetta. In D. Vargha (Ed.), COLING ’88. Proceedings of the 12th Conference on Computational Linguistics, Vol. 2, Budapest, Hungary, 22–27 August, (pp.442–447). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Velldal, E.
(2011) Predicting speculation: A simple disambiguation approach to hedge detection in biomedical literature. Journal of Biomedical Semantics, 2(5), S7. Crossref link
Velldal, E., Øvrelid, L., & Oepen, S.
(2010) Resolving speculation: MaxEnt cue classification and dependency-based scope rules. Proceedings of the Fourteenth Conference on Computational Natural Language Learning – Shared Task, Uppsala, Sweden, 15–16 July (pp.48–55).
Velldal, E., Øvrelid, L., Read, J., & Oepen, S.
(2012) Speculation and negation: Rules, rankers, and the role of syntax. Computational Linguistics, 38(2), 369–410. Crossref link
Velupillai, S.
(2011) Automatic classification of factuality levels: A case study on swedish diagnoses and the impact of local context. Fourth International Symposium on Languages in Biology and Medicine, LBM 2011, Singapore, 14–15 December.
Velupillai, S., Dalianis, H., & Kvist, M.
(2011) Factuality levels of diagnoses in swedish clinical text. MIE (pp.559–563).
Velupillai, S., Skeppstedt, M., Kvist, M., Mowery, D., Chapman, B. E., Dalianis, H., & Chapman, W. W.
(2014) Cue-based assertion classification for swedish clinical text – Developing a lexicon for pyConTextSwe. Artificial Intelligence in Medicine, 61(3), 137–144. Crossref link
Verbeke, M., Frasconi, P., Van Asch, V., Morante, R., Daelemans, W., & De Raedt, L.
(2012) Kernel-based logical and relational learning with kLog for hedge cue detection. In S. H. Muggleton, A. Tamaddoni-Nezhad, F. A. Lisi (Eds.), Inductive Logic Programming (Lecture Notes in Computer Science, Vol. 7207) (pp.347–357). Heidelberg: Springer. Crossref link
Vincze, V.
(2014) Uncertainty detection in hungarian texts. Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland, August 23–29 (pp.1844–1853).
(2015) Uncertainty Detection in Natural Language Texts (Unpublished PhD dissertation). Unversity of Szeged.
(2016) Detecting uncertainty cues in Hungarian social media texts. ExProM 2016. Extra-Propositional Aspects of Meaning in Computational Linguistics. Proceedings of the Workshop, Osaka, Japan, 12 December (pp.11–21).
Vincze, V., Simkó, K. I., & Varga, V.
(2014) Annotating uncertainty in hungarian webtext. The 8th Linguistic Annotation Workshop in conjunction with COLING 2014. Proceedings of the Workshop, 23–24 August, Dublin, Ireland (pp.64–69).
Vlachos, A., & Craven, M.
(2010) Detecting speculative language using syntactic dependencies and logistic regression. Proceedings of the Fourteenth Conference on Computational Natural Language Learning – Shared Task, Uppsala, Sweden, 15–16 July (pp.18–25).
Von Fintel, K.
(2006) Modality and language. In D. M. Borchert (Ed.), Encyclopedia of Philosophy (2nd ed.). Detroit, MI: MacMillan Reference USA. Most recent version online at http://​mit​.edu​/fintel​/www​/modality​.pdf.
Voorhees, E. M., & Hersh, W. R.
(2012) Overview of the TREC 2012 medical records track. The Twenty-First Text REtrieval Conference (TREC 2012) Proceedings (NIST Special Publication: SP 500–298.) http://​trec​.nist​.gov​/pubs​/trec21​/t21​.proceedings​.html
Wei, Z., Chen, J., Gao, W., Li, B., Zhou, L., He, Y., & Wong, K.
(2013) An empirical study on uncertainty identification in social media context. ACL (2013) (pp.58–62). Stroudsburg, PA: Assocation for Computitational Linguistics (ACL).
Wetzel, D., & Bond, F.
(2012) Enriching parallel corpora for statistical machine translation with semantic negation rephrasing. In M. Carpuat & L. Specia (Eds.), SSST-6 ’12. Proceedings of the Sixth Workshop on Syntax, Semantics and Structure in Statistical Translation, Jeju, Republic of Korea, 12 July (pp.20–29). Stroudsburg, PA: Association for Computational Linguistics (ACL).
White, J. P.
(2012) UWashington: Negation resolution using machine learning methods. Proceedings of the First Joint Conference on Lexical and Computational Semantics, Vol. 1: Proceedings of the Main Conference and the Shared Task, and Vol. 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (pp.335–339).
Wiegand, M., Balahur, A., Roth, B., Klakow, D., & Montoyo, A.
(2010) A survey on the role of negation in sentiment analysis. Negation and Speculation in Natural Language Processing (NeSp-NLP 2010), Proceedings of the Workshop, Uppsala, Sweden, 10 July (pp.60–68). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Wilson, T., Wiebe, J., & Hoffmann, P.
(2005) Recognizing contextual polarity in phrase-level sentiment analysis. Proceedings of HLT-EMNLP 2005.
Wu, S., Miller, T., Masanz, J., Coarr, M., Halgrim, S., Carrell, D., & Clark, C.
(2014) Negation’s not solved: Generalizability versus optimizability in clinical natural language processing. PloS One, 9(11), e112774. Crossref link
Zhang, S., Kang, T., Zhang, X., Wen, D., Elhadad, N., & Lei, J.
(2016) Speculation detection for chinese clinical notes: Impacts of word segmentation and embedding models. Journal of Biomedical Informatics, 60, 334–341. Crossref link
Zhang, Y., Jiang, K., Dong, J., Qian, D., Wu, H., Geng, X., & Wang, L.
(2014) Negation detection in chinese electronic medical record based on rules and word co-occurrence. In S. Li, Q. Jin, X. Jiang, J. H. Park (Eds.), Frontier and Future Development of Information Technology in Medicine and Education, ITME 2013 (Lecture Notes in Electrical Enginering 269) (pp.2215–2220). Heidelberg: Springer. Crossref link
Zhao, J., Zhu, T., & Lan, M.
(2014) ECNU: One stone two birds: Ensemble of heterogenous measures for semantic relatedness and textual entailment. Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, 23–24 August (pp.271–277). Crossref link
Zhou, H., Deng, H., Huang, D., & Zhu, M.
(2015) Hedge scope detection in biomedical texts: An effective dependency-based method. PloS One, 10(7), e0133715. Crossref link
Zhou, H., Xu, J., Yang, Y., Deng, H., Chen, L., & Huang, D.
(2016) Chinese hedge scope detection based on structure and semantic information. In M. Sun, X. Huang, H. Lin, Z. Liu & Y. Liu (Eds.), Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (Lecture Notes in Computer Science, Vol 10035), (pp.204–215). Cham, Switzerland: Springer. Crossref link
Zhu, Q., Li, J., Wang, H., & Zhou, G.
(2010) A unified framework for scope learning via simplified shallow semantic parsing. EMNLP 2010. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, MA, 9–11 October (pp.714–724).
Zou, B., Zhou, G., & Zhu, Q.
(2013) Tree kernel-based negation and speculation scope detection with structured syntactic parse features. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Washington, 18–21 October (pp.968–976).
(2016) Research on chinese negation and speculation: Corpus annotation and identification. Frontiers of Computer Science, 10(6), 1039–1051. Crossref link
Zou, B., Zhu, Q., & Zhou, G.
(2015) Negation and speculation identification in chinese language. ACL 2015 (pp.656–665). Stroudsburg, PA: Association for Computational Linguistics (ACL).
Zuck, J. G., & Zuck, L. V.
(1986) Hedging in newswriting. In A. M. Cornu, J. van Parijs, M. Delahaye, & L. Baten (Eds.), Beads or Bracelets. How do we Approach LSP (pp.172–180). Oxford: Oxford University Press.
Subjects
BIC Subject: CF – Linguistics
BISAC Subject: LAN009000 – LANGUAGE ARTS & DISCIPLINES / Linguistics / General
U.S. Library of Congress Control Number:  2018047742